
.J

l
__J

Coleco ADAM™
User's Handbook

Coleco ADAM™
User's Handbook

by
WSI Staff

Weber Systems. Inc.
Cleveland, Ohio

The authors have exercised due care in the preparation of this book and the
programs contained in it. The authors and the publisher make no warranties
either express or implied with regard to the information and programs contained
in this book. In no event shall the authors or publisher be liable for incidental or
consequential damages arising out of the furnishing, performance, or any
information and/or programs.

ADAM"', SmartBASIC"'. SmartWriterTV are trademarks of Coleco Industries. Inc.
Applesoft BASIC® is a registered trademark of the Apple Computer Corp.
CP/ M8 is a registered trademark of Digital Research.
Buck Rogers'-C is copyrighted by, and a trademark of the Dille Family Trust.
Planet of Zoom"'C is copyrighted by, and a trademark of Sega Enterprises. Inc.

Published by:
Weber Systems, Inc.
8437 Mayfield Road
Cleveland, Ohio 44026

For information or translations and book distributors outside of the United
States, please contact WSI at the above address.

Coleco ADAM"" User's Handbook
Copyright© 1984 by Weber Systems, Inc. All rights reserved under Intena­

tional and Pan-American Copyright Conventions. Printed in the United States
of America. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, electronic, mechanical,
photocopy, recording, or otherwise without the prior written permission of the
publisher.

Library of Congress Cataloging in Publication Data
Main entry under title:

Coleco ADAM User's Handbook.

Includes index.
I. Adam (Computer) - Programming. 2. BASIC (Computer program

language) I. Weber Systems, Inc.
QA 76.8.A I 53c65 I 984 001.64 84-2240
ISBN 0-938862-45-6

Typesetting and Layout: Tina Koran, Jana Butler, and Maria Stamoulis

Contents

Introduction

1. Introduction to the ADAM and its Peripherals

Overview 11. System Components 12. System Unit 12. ADAM NET
13. Bits and Bytes 13. ROM and RAM 14. Digital Data Pack 14.
Keyboard 17. Letter Quality Printer 17. BASIC Interpreter 17. Other
Software 18.

2. Installation and Troubleshooting

Introduction 19. Installing ADAM 19. Installing the ADAM Family
Computer System I 9. Directions for Setting Up ADAM 20. Installing
Expansion Module #3 to your Coleco Vision System 23. Directions for
Expanding your Coleco to Include ADAM 23. If Something Goes
Wrong 26. No Power 26. Printer Problems 26. Smart BASIC or Appli­
cations Program will not Boot 30.

9

11

19

3. The SmartWriter Word Processor 31

Introduction 31. Getting Started 32. The Keyboard 33. Screen Op­
tions 36. Sound 36. Color 36. The Moving Window Format 37.
File Handling 38. Creating and Storing a File 39. Retrieving a File 41.
Backup Files 43 . Editing Files 44. Cursor Movement 45. Text
Replacement 47. Text Deletion-BACKSPACE 47. Text Insertion 47 .
Finding Text 48. ESCAPE and UNDO 49. Text Movement 50.
Saving Highlighted Text to a File 52. Printing Text 55. Formatting
Text 56. Margins 56. Ending a Page 60. Changing Paper Size 61.
Changing Line Spacing 62. Super and Subscripting 63. Tabs 64.
Overview: The Smart Keys Revisited 67.

4. Introduction to SmartBASIC 71

Introduction 71. The BASIC Programming Language Background 71.
Programming Languages 72. Compiled vs. Interpreted Languages 72.
Getting Started with SmartBASIC 73. Immediate and Program Modes
74. Command and Statement Structure 75. Entering a Program 75.
Error and Warning Messages 77. Listing a Program 78. Editing a
Program 79. Running a Program 81. Saving a Program 82. Loading a
Program 83. Multiple Statements 83.

5. Data Types, Variables, & Operators

Introduction 85. Data Types 85. Strings 85. Numeric Data 86. Vari­
ables - An Overview 88. Variable Names 89. Initial Variable Values
90. Assignment Statements 90. CLEAR Statement 91. Expressions &
Operators 92. Arithmetic Operators 92. Order Of Evaluation (Arith­
metic Expressions) 93. Mixing Variable Types in Arithmetic Expres­
sions 94. Relational Operators 95. Logical Operators 97. Order of
Evaluation - Overview 99.

85

6. Inputting and Outputting Data 101

Introduction IOI. PRINT 101. Horizontal Formatting 104. TAB 105.
SPC l05. Vertical and Horizontal Tabs 105. Outputting Data to the
Printer 106. Inputting Data 107. INPUT 107. GET Statements 109.

7. Conditional, Branching, and Looping Statements 111

Introduction 111. Conditional Branches 111. Branching Statements
112. Subroutines and GOSUB 112. Conditional Statements with
Branching 113. Looping Statements 115. Error Handling 11 7.

8. Tables and Arrays 119

Introduction 119. Subscripted Variables I 19. Arrays and Tables 120.
Dimensioning an Array 121. DATA &,READ Statements 123.

9. Functions & String Handling 129

Introduction 129. Built-in Numeric Functions 130. Mathematical
Functions 130. User-Defined Functions 133. Strings & String Han­
dling 134. String Concatenation 134. String Handling Functions 135.
String/ Numeric Data Conversion 137. Variable Table and String
Storage 138. Housekeeping and FRE 139.

10. Files and File Handling with SmartBASIC 141

Introduction 141. File Types 141. Filenames 141. Program Files 142.
Saving Programs 142. Loading Programs 142. Running Programs 143.
Cataloging a Data Pack 144. Renaming a File 144. Deleting a File 145.
Protecting a File 145. Initializing a Data Pack 145. Using Data Drive
Commands in Programs 146. Data Files 147. Opening and Closing
Files 147. Reading and Writing Data 148. The 1/ 0 Monitor 150.
Problems with Data Files 151 .

11 . ADAM Graphics

Introduction I 53. Low Resolution Graphics 154. Commands 154.
Use of Low Resolution Graphics 156. Charts 156. Writing a Game
Program 157. High Resolution Graphics 160. Commands 160. Using
the Shape Table 162. SCALE 162. ROT 162. DRAW 163. XDRAW
J 63. Programming Using High Resolution Graphics 164.

153

12. SmartBASIC Reference Gulde

Introduction 165. ABS 166. AND 166. ASC 168. ATN 168. CALL
169. CHR$ 170. CLEAR 170. COLOR 171. CONT 172. COS 173.
DATA 173. DEF FN 174. DEL 175. DIM 176. DRAW 177. END
178. EXP 178. FOR.NEXT 178. FRE 180. GET 181. GOSUB,RE­
TURN 181. GOTO 183. GR 183. HCOLOR 184. HGR 185. HGR2
185. HIMEM: 186. HLIN 187. HOME 187. HPLOT 188. HTAB
189. IF.THEN 189. INT 190. INVERSE 191. INPUT 191. LEFT$
192. LEN 193. LET 194. LIST 194. LOAD 195. LOG 196. LOM­
EM: 196. MID$ 197. NEW 197. NORMAL 198. NOT 198. NO­
TRACE 199. ON 199. ONERR GOTO 201. OR 201. POL 202.
PEEK 204. PLOT 204. POKE 206. POP 206. POS 208. PRINT
209. PR# 209. READ 210. REM 211. RESTORE 211. RESUME
212. RETURN 213. RIGHT$ 213. RND 214. ROT= 215. RUN 216.
SAVE 217. SCALE= 217. SCRN 218. SGN 219. SIN 219. SPC 220.
SPEED 220. SQR 221. STOP 221. STR$ 222. TAB 222. TAN 223.
TEXT224. TRACE 224. VAL224. VLIN 225. VTAB226. XDRAW
226. Operating System Commands 227. Other Commands 228.

165

Appendix 1 SmartBASIC Reserved Words 229

Appendix 2 SmartWriter Reference Guide • 230

Appendix 3 SmartBASIC ASCII Codes 234

Index 236

Introduction

The Coleco ADAM User's Handbook is a complete guide to the
operation of the ADAM computer system. The ADAM offers p_owerful
word processing and programming capability. both of which are covered
in depth in this book. The combination of tutorial and reference material
contained in this book make it an ideal guide for beginning as well as
experienced ADAM owners.

Chapter I provides an overview of the A DAM as well as an in trod uc­
tion to the concepts of computing. No prior knowledge of computing,
word processing, or programming is assumed.

Chapter 2 contains a complete description of A DAM installation. A
troubleshooting guide is also included to help the reader solve common
equipment problems.

Chapter 3 contains a comprehensive guide to the Smart Writer word
processor. This chapter includes a tutorial on Smart Writer operations,
complete with examples and convenient reference material. Keyboard
usage is also discussed in this chapter.

Chapters 4 through 11 provide extensive information concerning the
techniques used to program the ADAM in the SmartBASlC program­
ming language. These chapters cover all aspects of computing, including
file handling and graphics.

The final chapter is a detailed reference guide to the Smart BASIC
language. This chapter allows a programmer to quickly recall the exact
structure of any program statement.

The Coleco ADAM User's Handbook combines tutorial and refer­
ence chapters with useful appendices to provide a valuable guide for all
ADAM owners.

1
Introduction to the ADAM and its
Peripherals

Overview

The decade of the 1980's has seen a phenomenal growth in the
information processing power brought to consumers at affordable prices.
Tasks which would have required huge mainframe computers only a few
years ago are now commonplace. and can be undertaken by inexpensive
home machines. The Coleco ADAM is just such a machine. and its
combination of price, ease, and features make it one of the finest offerings
yet brought to today's market.

With ADAM, you can play hundreds of games. In addition to
Coleco game cartriges, you can play cartridges designed for the Atari
2600 video computer system by Activision, I magic, Parker Brothers, and
many more.

ADAM also contains an advanced word processor and letter quality
printer. With these you can professionally prepare any written document
from homework to a best seller.

BASIC is fast becoming a second language in our computer con­
scious society. With ADAM's powerful BASIC interpreter, you can

11

12 Coleco ADAM User's Handbook

automate tedious or complicated routines.
The ability to rapidily process large quantities of information is not

enough: sophisticated applications programs must also be available in
order to fully exploit the power of the computer. CP / M is the key to a
treasure of programs which enable you to do financial analysis, record
keeping, and countless other tasks. CP/ M will soon be available for the
ADAM.

System Components

ADAM is a complete home computer system - it includes hardware
which enables the user to write letters, play games, and run state-of-the­
art applications programs. Let's go for a brief tour of the equipment that
performs these tasks.

SYSTEM UNIT

Figure 1.1 shows the heart of ADAM - the system unit. Contained
in the system unit are several microprocessors, 80 kilobytes of random
access memory (RAM), the Smart Writer word processor on a read-only
memory chip (ROM), a Digital Data Drive, and a game slot.

llllllllllll ll 1/ 1J :,, , 1,

IIIIIJIIII II II/ llll 11111111 I 1111111111

,,,,,,,,,,,,,,r,m,,,,,,

FIGURE 1-1. The ADAM System Unit

Introduction to the ADAM and Its Peripherals 13

ADAM NET

The CPU or central processing unit is the heart of any computer. The
CPU consists of the circuitry that interprets and executes the instructions
issued to the computer. With most personal computers, the CPU func­
tions are generally combined on a single chip, known as a microprocessor.

ADAM's CPU contains several microprocessors, each of which
controls a specific action of ADAM. Because each part of ADAM has its
own brain , ADAM can execute two or three tasks simultaneously. This
network of multi-tasking is collectively known as ADAM NET.

The principal microprocessor in ADAM NET is the 280A. This
performs all the logic and math operations. ADAM NET also includes
four 6801 microprocessors. Three of these control the tape drive, key­
board, and printer. The final 680 I acts as a foreman , getting instructions
from the boss (Z80A), and then delegating the work .

BITS AND BYTES

ADAM's microprocessors must be given instructions to perform
their work. These instructions are issued in machine language. All
machine language instructions are given in bits. A bit may assume one of
two values: I or 0. Imagine the difficulty of writing and entering correctly
a string of ten thousand O's and l's which would tell ADAM how to play a
game!

0 and I make up the digits of a base 2 or binary number system. Early
in the history of computing, someone noticed that base 2 numbers could
easily be converted to base 16 (hexadecimal). Conversion to base 16
accomplishes two things: it reduces the number of digits required to
denote data and it increases the variety of available digits . Moreover, a
hexadecimal string can easily be converted to its binary equivalent.

Since people communicate with symbols, mainly the alphabet and
numbers, codes were devised to convert these symbols to base 2. The code
that ADAM recognizes is known as ASCII (American Standard Code for
Information Interchange). ASCII codes can assume a value from O to
255. In hexadecimal, 255 is represented by FF~ in binary by 1111 1111 .

Notice that 8 bits are required to represent an ordinary ASCII
symbol. This grouping of 8 bits is so common that it has come to have a
name of its own, a byte. A group of 1024 bytes also has a name of its own,
a kilobyte, this is often used as an abbreviation for kilobyte. For example,
I OK is shorthand for IO kilobytes.

14 Coleco ADAM User's Handbook

The 280A is an 8-bit microprocessor. The 280A is capable of work­
ing with 6S,S3S memory locations or addresses. In other words, Z80A can
directly address 64K of memory.

ADAM includes 80K of main memory. 64K of that memory is
directly addressed by the Z80A processor. The remaining 16K of RAM is
reserved for ADAM's graphics capabilities.

ROM AND RAM
The CPU must call upon memory chips in order to store and retrieve

information. Two kinds of memory chips have come into common usage:
random access and read only memory.

Random Access Memory, RAM, is used like a large blackboard by
the CPU. A memory cell or address may have information written to it or
read from it. The contents of an address may also be overwritten with new
information. When ADAM is powered off, any information stored in
RAM will be lost.

Read Only Memory (ROM), on the other hand contains informa­
tion which cannot be changed. The SmartWriter program is stored in
ROM. The main advantage of storing a program in ROM is that it can be
accessed almost immediately, instead of having to wait for it to be loaded
from a Digital Data Pack. Another advantage is that a program stored on
ROM cannot accidently be altered or erased.

Digital Data Pack

Each job that ADAM performs is accomplished by its CPU. The
CPU obtains its instructions from ADAM 's memory. If the necessary
instructions are contained in ROM, the CPU merely fetches them. How­
ever, if the necessary instructions are to be found in RAM, they must first
be stored there. Two of the most comnton ways of doing this are through
the keyboard or from a Digital Data Drive.

The Digital Data Pack, shown in Figure 1.2, is similar in appearance
to an audio cassette. Information is stored on the coating of the tape as
regions of magnitized and unmagnitized particles. The read/write head
inside the Digital Data Drive converts these magnitized and unmagnit­
.zed regions into binary code. The operating system then loads these
nstructions into RAM. An operating system can be defined as a group of
>rograms which manage the computer's operation. The ADAM's operat­
ng system is stored in 8K of ROM.

Introduction to the ADAM and Its Peripherals 15

FIGURE 1-2. Digital Data Pack

Although audio cassettes appear to be identical to Digital Data
Packs, do not try to interchange them. Each has been engineered to
perform a specific task.

If you own a cassette recorder or player, you will notice that the
Digital Data Pack will respond more quickly than an ordinary audio
cassette. The data transfer rate of a Digital Data Pack approaches that of
a floppy disk.

Digital Data Packs are capable of storing up to 250K of information
each. This translates to about 150 pages of double spaced text.

Digital Data Packs must be treated with caution. The tape surface
can easily be damaged if the cassette is not treated carefully. Since
information is recorded magnetically on the tape surface, all external
magnetic fields must be avoided. Many common appliances such as
television, telephones and stereo speakers radiate magnetic fields strong
enough to damage information stored on a cassette. Try to keep cassettes
at least a foot away from any equipment that draws a significant amount
of power.

Like a stereo record, dust and scratches will also damage the cassette
recording surface. The plastic case the cassette arrived in serves to protect
the exposed magnetic surface when the cassette is not in use.

16 Coleco ADAM User's Handbook

Humidity and heat are also enemies of an error-free cassette , so
always store cassettes in a cool, dry place.

The ADAM 's Digital Data Drive has a small door which must be
opened to insert or remove cassettes. The door can be opened by pressing
a switch located above it.

When information is read from or written to a Digital Data Pack, the
Data Drive first locates the desired file. If a Digital Data Pack is removed
while the drive is active, there is a good chance that data will be destoyed
on the Data Pack. If it is imperative that a read or write operation be
interrupted , a warm boot is the recommended procedure. A warm boot is
accomplished by pulling the RESET COMPUTER switch located to the
left of the game cartridge slot. Although a warm boot will not harm any
data already stored on the Data Pack, it is likely that the particular file
that was being saved or loaded will be destroyed . The ref ore, a Data Pack
read or write operation should be stopped only as a last resort.

Always insert cassettes into drives with the manufacturers label
facing up, as shown in Figure 1-3. Never use excessive force when insert­
ing the cassette.

I • I I I II,, ,

ll1111111111111111111111111111I1111111

FIGURE 1-3. Digital Data Drive

lllllllllllllllll!llllllll

Introduction to the ADAM and Its Peripherals 17

When the cassette has been inserted in the drive, close the door. The
door must be shut for the device to work. To remove the cassette, flip the
door open and carefully pull.

KEYBOARD

ADAM comes with a professional quality keyboard with 75 full­
travel keys. In addition to the standard typewriter keys, the A DAM
includes special keys which allow the cursor to be moved around the
display. Keys are also available which allow special instructions to be
issued with a single keystroke.

LETTER QUALITY PRINTER

ADA M's letter quality daisy wheel printer allows output on almost
any kind of paper. The printer is bidirectional, that is. it types from left to
right, advances the carriage a line, and then types the next line from right
to left. This enables it to print at a rate of 120 words per minute.

In addition to the standard pica (l O characters per inch) daisy wheel
which comes with ADAM, other daisy wheels can be installed. This
means that by changing the wheel, special characters such as Greek or
mathematical symbols can be output. With an optional print head ,
available soon, 12 character per inch wheels can be installed, allowing
additional characters to be output on each line.

BASIC INTERPRETER

As mentioned earlier, ADA M's Z80A central microprocessor only
understands instructions consisting of sequences of binary code. A
machine language program uses binary or hexadecimal numbers to issue
instructions to the microprocessor. An assembly language program uses a
phrase known as a mneumonic to communicate instructions. J MP is an
example of an assembly language mneumonic. Machine and assembly
languages are known as low-level languages. While execution of low level
code is quite fast, programming in low level languages is a tedious,
time-consuming task.

To remedy this, high level languages have been developed which
more closely resemble English. BASIC. which stands for Beginners All­
purpose Symbolic Instruction Code, has emerged as the most popular

18 Coleco ADAM User's Handbook

microcomputing language. With BASIC, the programmer need not con­
cern himself with details like register manipulation and memory man­
agement.

If you are not already a programmer, BASIC probably should be the
first language you learn. Over the years, many BASIC applications
programs have been developed which can help solve a variety of com­
monly encountered problems. Once you have learned BASIC, you will be
able to write programs that will solve problems that you encounter.

ADDITIONAL SOFTWARE

In addition to the SmartBASIC interpreter and Smart Writer word
processor included with your ADAM, Coleco plans to introduce more
software to help make the user make the most of his or her ADAM. This
software should be available sometime in 1984.

The most important of these software announcements is the future
availability of CP/ M for the ADAM. The CP/ M operating system is by
far the most commonly used on 8-bit microcomputers. CP / M is the key
to implementing thousands of available programs.

2
Installation and Troubleshooting

Introduction

In this chapter, we will explain in detail the steps necessary to set up
the ADAM. We will also discuss many commonly encountered problems,
along with the steps that should be taken to correct these problems.

Installing ADAM

Coleco has simplified the installation procedure to the point where
almost anyone can set up the unit on his own. We would, however, advise
that the unit be installed by an adult. Some of you purchased the A DAM
family computing system, while others expanded the Coleco Vision Video
Game System with Expansion Module #3. Accordingly. two installation
procedures will be detailed.

INSTALLING THE ADAM FAMILY COMPUTER SYSTEM

Unpack the ADAM components from their shipping carton. Check
the parts against those listed on the following page.

19

20 Coleco ADAM User's Handbook

System Unit
Keyboard Unit
Daisy-Wheel Printer;

Pica 10 pitch daisy wheel (installed)
Carbon Ribbon Cartridge (installed)

Pair of Game Controllers:
1 Holder to attach controller to keyboard

3 Digital Data Packs:
SmartBASIC Digital Data Pack
Blank Digital Data Pack
BUCK ROGERS Planet of Zoom Super Game Pack

Cords:
Keyboard to system unit
TV switch box to system unit
Printer to system unit

Antenna Switch Box
Manuals:

ADAM Set Up Manual
ADAM Word Processing Manual
ADAM SmartWriter Easy Reference Guide
ADAM SmartBASIC Manual
ADAM Super Game Pack Manual

3-to-2 Prong Plug Adapter

DIRECTIONS FOR SETTING UP ADAM

I. Connect the keyboard to the system unit with the cord
provided.

2. Connect the joystick cords to the system unit.
3. Connect the Controller Unit to the Keyboard and attach one

of the joysticks.
4. Connect the printer to the system console with the cord

provided.
5. Connect the antenna switch box to the system unit.

NOTE: the TV should be "off'

6. Connect the switch box, depending on the type of antenna
and antenna connector. You will have to purchase conver­
ters if either your antenna or connector are designed for
coaxial cable.

7. Plug the printer into the nearest 110/ 120 volt wall outlet,
using the 3-to-2 prong adaptor if necessary. Make sure the
outlet is grounded.

Installation and Troubleshooting 21

8. Set the antenna switch box to "computer".
9. Turn your television to channel 3 or 4 (for best results use a

channel which your area does not receive). Make sure the
selector on the back of the system unit agrees with your TV.

10. Turn the daisy wheel printer on with the switch located at the
back. The standard typewriter screen should appear as
shown below:

·1·1l·1·1l·1·1l·1·1l·1·1l·1·1l·1·1I

ADAM'S
ELECTRONIC TYPEWRITER MARGIN/

TAB/ETC

BIii
MARGIN
RELEASE

11 . Insert a sheet of paper in the daisy wheel printer just as you
would a typewriter. If the paper is not straight, loosen the
paper release and re-align it.

12. Type the following:

Pack my box with twelve dozen liquor jugs

the text should appear both on the screen and the printer.

22 Coleco ADAM User's Handbook

13. Clear the screen by pulling the RESET COMPUTER switch
forward, as shown below:

14. Insert the SmartBASIC Digital Data Pack into the Digital
Data Drive and pull the RESET COMPUTER switch
again. The Digital Data Drive should activate and load the
program. This procedure takes approximately 30 second s.
Do not interrupt the loading procedure. D oing so may ca use
damage to the Sma rtBASIC Data Pack . The following dis­
play should appear:

Coleco SmartBASIC V1 .0

l -

Open the Digital Data drive and remove the Data Pack.
Use the RESET COMPUTER button to return to the
typewriter mode. This concludes our set-up procedure.

Installation and Troubleshooting 23

INSTALLING EXPANSION MODULE #3 WITH THE
COLECOVISION SYSTEM

Unpack the expansion module components from their shipping
carton. Check the parts against the list below and make sure they are all
present.

64K RAM Memory Add-on with one Digital Data Drive
System Interlock Tray
Keyboard Unit
1 Holder to attach game controller to keyboard
Daisy-Wheel Printer:

Pica 10 pitch daisy wheel (installed)
Carbon Ribbon Cartridge (installed)

3 Digital Data Packs:
SmartBASIC Digital Data Pack
Blank Digital Data Pack
BUCK ROGERS Planet of Zoom Super Game Pack

Cords:
Keyboard to Memory Add-on Unit
TV switch box to system unit
Printer to system unit

Manual:
ADAM Set Up Manual
ADAM Word Processing Manual
ADAM SmartWriter Easy Reference Guide
ADAM SmartBASIC Manual
ADAM Super Game Pack Manual

3-to-2 Prong Plug Adaptor

DIRECTIONS FOR EXPANDING COLECOVISION TO INCLUDE
ADAM

Before beginning, turn the system and TV off and make sure all
cartridges have been removed.

I. Disconnect the power supply from the ColecoVision unit
and store it. The expansion unit includes a new power
supply.

2. Fasten the ColecoVision game unit to the system interlock
tray.

3. Open the expansion module door on the front of the Coleco­
Vision system and lock it in the open position.

4 . Slide the expansion module into the ColecoVision system
and lock the two units together.

24 Coleco ADAM User's Handbook

5. Connect the keyboard to the system unit with the cord
provided.

6. Connect the Controller Unit to the keyboard and attach one
of the joysticks.

7. Connect the printer to the system console with the cord
provided.

8. Switch the antenna box to the "game" position.
9. Plug the printer into the nearest 110/ 120 volt wall outlet,

using the 3-to-2 prong adaptor if necessary. Make sure the
outlet is grounded.

10. Turn your television to channel 3 or 4 (for best results, use
the channel with the weaker reception). Make sure the selec­
tor on the back of the expansion unit agrees with the TV.

11. Turn the daisy wheel printer on with the switch located on
the back. The following display should appear on the screen:

• 1 • 1 I • 1 • 1 I • 1 • 1 I • 1 • 1 I • 1 • 1 I • 1 • 1 I • 1 ~ 1 .1

ADAM'S
ELECTRONIC TYPEWRITER MARGIN/

TAB/ETC
MARGIN
RELEASE

12. Insert a sheet of paper in the daisy wheel printer in the same
manner as with a typewriter. If the paper is not straight,
loosen the paper release and re-align it.

Installation and Troubleshooting 25

13. Type the following:

Pack my box with twelve dozen liquor jugs

The text should appear both on the screen and the printer.
14. Clear the screen by pulling the RES ET COMPUTER switch

forward, as shown below:

.Ll·

L ____ -

-
o.._ ___________ __,;_;!!~I!;..;.! !;..;.! I;.;.! !;.;.!.;.;.If ;.;.: !;.;;!~~ ! !.;..;.l!-'-'-H

15. Insert the Smart BASIC Digital Data Pack into the Digital
Data Drive and pull the RESET COMPUTER switch
again . The Digital Data Drive should activate and load the
program. This procedure takes approximately 30 seconds.
Do not interrupt the loading procedure. Doing so might
damage the SmartBASIC Data Pack. The foil owing display
should appear:

Coleco SmartBASIC V1 .0

] -

Open the Digital Data drive and remove the Data Pack.
Use the RESET COMPUTER button to go back to the
typewriter mode. This concludes our set-up procedure.

26 Coleco ADAM User's Handbook

If Something Goes Wrong ...

ADAM has been designed to offer many of hours of trouble-free
service, but occasionally hardware components fail. The remainder of
this chapter is devoted to determining problems which may occur, and
offering advice on how to remedy them.

NO POWER

Probably the most frightening type of failure is when the machine is
turned on, and absolutely nothing happens. If this should occur, first
check to see that the power cord is properly connected . If the unit still
does not work, check the wall socket with an appliance that you know is
functioning. If the wall outlet checks out, check your television set to
make sure that it is functioning correctly and tuned to the proper channel.
If your television is in good working order, then contact the A DAM
HELP Hotline. The toll-free number is l-800-842-1225 and may be
contacted from 8:00 am to 5:00 pm Eastern Standard Time.

PRINTER PROBLEMS

The Smart Writer letter-quality printer has a built-in microprocessor
which minimizes the number of moving parts in its design. This was a wise
move on the part of ADAM's makers, since moving parts are generally
more subject to failure from wear and misalignment. In this section, the
various moving parts that can be adjusted without special tools will be
reviewed . This discussion will include some commonly encountered prob­
lems and possible remedies, As always, caution should be exercised when
working with electrical or moving parts. It is always a good precaution to
unplug the unit while servicing it.

While the cable which connects ADAM to the printer is generally
not regarded as a moving part, it is subject to move,nent. If cable
movement causes the special plug to move, it may not be able to "com­
municate" effectively. Any time that the printer begins to type nonsense,

the cable should be checked to see that it is securely seated.
The daisy wheel, shown in Figure 2-1 , is made of a light weight rigid

plastic. Each of its spokes contains a single character whose imprint is

Installation and Troubleshooting 27

transferred to paper through a inked ribbon by impact from a small metal
hammer located at the top of the daisy wheel print mechanism. The wheel
is aligned by means of a pin, as shown in Figure 2-2. If the wheel is not
properly aligned, then the hammer will probably strike somewhere other
than dead center. It is not unlikely that spokes would be broken with the
wheel in this condition. The wheel must also be firmly seated. If not seated
properly, it will wobble like a poorly thrown frisby, and ca use additional
wear on the drive motor and possible damage to the wheel itself.

FIGURE 2-1. Pica Daisy Wheel

l

FIGURE 2-2. Daisy Wheel Alignment

28 Coleco ADAM User's Handbook

The daisy wheel print mechanism both rotates the wheel to the
proper position and impacts it for character transferral. It may be rotated
forward by releasing the latches located on either side, as shown in Figure
2-3. The mechanism is re-secured by simply rotating forward and pressing
down until the latches click back into place . If the mechanism is not firmly
in place, the hammer will not have a solid surface to s trike against.
Additionally, the hammer will travel forward farther than no rmal and

possibly break a daisy wheel spoke.

f

7

FIGURE 2-3. Releasing the Daisy Wheel Mechanism

The ribbon cartridge constantly gives the printer a fresh supply of

inked ribbon. The ribbon is supplied from right to left by a spool on the

right hand side of the cartridge (looking down from the front of the

printer) which unrolls counter-clockwise. A pair of rollers pull used

ribbon into the left hand side of the cartridge where a second spool turns

clockwise to collect it. The rollers are driven from be neath by the print

mechanism. A small rubber pulley transfers the motion of the rolle rs to

the collecting spool. The ribbon cartridge is fastened to the print mecha­
nism with a notched latch, shown in Figure 2-4.

Installation and Troubleshooting 29

1 2 3 4
5

7

1. Supply Spoo l 2. Col lect io n Spool Col lection Pulley 4. Notched Ho ld Do wn
Latc h 5. Ribbon Ad vance Ro ller

FIGURE 2-4. Ribbon Cartridge Assembly

If the p rinte r is impac ting, but no characte rs o r poo rl y defi ned
cha racte rs a re be ing fa rmed , then o ne of the a fo re me ntio ned pa rts is
p ro ba bl y the cause. Rem ove the pr inte r cover to inspect the r ibbo n
a lignme nt. Make su re tha t the r ibbon fee d s a ro und the rig h t spring ,

be twee n the da isy whee l a nd ro ller, a nd around the left spring.
If the a li gnment is co rrect. c hec k to see tha t the ca rtrid ge has no t run

o ut of ribb o n . M ost ca rtrid ges have a s lo t o n the feed side which a llows
the user to sec ho w muc h ribb o n rema ins. lf the ca rt r idge is no t e mpt y,

type some text a nd wa tch to see if the ribbo n ad va nce ro lle r rota tes .
lf the a d va nce ro lle r d oes not ro ta te , the phillips-head dri ve f ro m

be lo w may not be e ngaged . R ota te the drive clockwise with the wheel
loca ted directly be nea th it unt il a c lick ca n be heard. If the d r ive is

e ngaged but will no t a d va nce the ribbo n, the n the ribb o n is p roba bly

ja mmed .
Re m ove the ca rtrid ge a nd try ad va ncing the ribb o n e ithe r b y ro ta t ­

ing the ad va nce ro lle r fro m a bove o r fr o m be low with a phillips-head

sc rew dri ve r. If the ri bb o n d oes no t adva nce, replace it. T he ca rtrid ge will
j a m if the rubbe r pulley is no t ins ta lled, so be su re it is in place w he n a new

ribbo n is being insta lled.
If the ad va nce d rive rota tes ma nua lly and the ribb o n a lso adva nces,

try e ntering so me text aga in. If the w heel d oes n o t a d vance o n it s own ,

30 Coleco ADAM User's Handbook

adjust the notched latch so that it exerts more downward pressure on the
ribbon cartridge. If this still does not remedy the problem, call the
ADAM HELP hotline.

Sometimes in the process of printing, the print mechanism carriage
may jam. causing the printer to begin printing lines in the wrong column.
If this should happen, save whatever data is being processed, remove all
Digital Data Packs, and pull the RESET COMPUTER switch. Check to
see that the problem has been fixed by entering text in the typewriter
mode. If this does not work. turn ADAM off with the switch behind the
printer and gently push the print mechanism to the left hand side . If the
printer does not return to normal when the unit is turned back on, call the

ADAM HELP hotline.

SMARTBASIC OR APPLICATIONS PROGRAM WILL NOT BOOT

Generally, when a SmartBASIC Data Pack is present in a Data
Drive, the COMPUTER RESET switch causes SmartBASIC to be
"booted" or loaded into memory. If this procedure does not produce the
desired results, make sure that the proper Data Pack is in use . Also, be
sure that the Data Drive door has been closed properly. If the problem
persists, the Data Pack or the drive mechanism is probably at fault . The
BUCK ROG ERST"' game can be used to test the Digital Data Drive. If the

game runs as it should, the SmartBASIC Data Pack is probably
damaged . For assistance, call the ADAM HELP hotline .

One thing to remember when handling Digital Data Packs is that a
computer program will not run if it contains any errors. Scratches are
annoying on stereo records, but deadly to data cassettes. We mentioned
the need for careful handling of Data Packs in Chapter l, and feel that it
bears repeating here:

I

Never touch the surface of a Digital Data
Pack's tape. Keep It away from all magnetic
fields. Never turn ADAM off when a
Dlgltal Data Pack Is still In It's drive.

3
The SmartWriter Word ~ocessor

Introduction

You have undoubtedly heard by now how word processors are
changing the way people work and think, but maybe you have wondered
exactly what a word processor is. A word processor is a computer
program which allows a user to create, manipulate, store, and retrieve
text. A word processor can be used to write a report, a memo, or even a
book.

Smart Writer is a powerful word processor which allows the user to
create, edit, and print letter quality text on the ADAM home computer.
Smart Writer is contained on a ROM (Read Only Memory) chip and can
be made available with a single keystroke.

A powerful menu-driven help system assists the user at every stage of
writing. By simply looking at the bottom of the screen, the user can
examine available options. Each time, a fresh menu of useful alternatives
will appear.

With Smart Writer, the user can sit down at the keyboard and enter
text just as he or she would at a typewriter. Unlike a typewriter, however,
SmartWriter allows text editing. Later, after phrases have been entered,

31

32 Coleco ADAM User's Handbook

the user can correct spelling or grammar or change wording as desired.

Text can be formatted in an almost limitless number of ways.

Because most people use 8½ x 11 inch paper with I inch margins on the

top and bottom, Smart Writer defaults its formatting options to reflect

this . Through the guidance of the menu system, these defaults can be

changed.

Smart Writer enables ADAM to store text as a file on a Digital Data

Pack . You will soon learn to browse through the Digital Data Pack's file

directory, to bring files into the Smart Writer environment, ~nd t o print

the contents of any file .

The remainder of this chapter will explain, by way of examples,

Smart Writer usage. The bes t way to become familiar with Smart Writer is

to scan this chapter. Then, sit down and work through the examples.

GETTING STARTED

Start ADAM with the power switch loca ted on the back of the

printer. Since SmartWriter is contained on a ROM chip, it does not ha ve

to be called up from a Digital Data Pack.

Start Smart Writer by pressing the ESCAPE key located in the upper

left hand corner of the keyboard. The first thing Smart Writer does is to

present the Standard Format Screen as shown in Figure 3-1.

H
MARGIN/ SCREEN
TAB/ETC OPTIONS

SEARCH HI-LITE

FIGURE 3-1. The Standard Format Screen

HI-LITE
ERASE

SUPER
SUBSCRIPT

The SmartWriter Word Processor 33

At the bottom of the screen, a figure resembling a typewriter roller,
or platen, will be displayed . An underline, known as a cursor, will appear
to ~he left of the platen. The cursor•s initial position upon Smart Writer
startup is known as the home position.

The top of the screen will contain a horizontal margin scale. The
small white dots that appear every 5 spaces are the tabs. The red marks at
positions 10 and 70 are the horizontal margin markers.

The leftside of the screen will contain a vertical margin scale. At its
very top should be the number 11, indicating standard 11-inch paper. The
marks visible at the top and bottom of the vertical margin scale indicate
the vertical margins and are referred to as vertical margin markers. As
with the horizontal scale, the large white mark indicates the vertical
cursor position.

Figure 3-2 shows the Standard Format Smart Key Labels. We will
discuss the use of the smart keys shortly .

IIIII
MARGIN/ SCREEN
TAB/ETC. OPTIONS

■11■
SEARCH

.. , ..
HI-LITE

..
HI-LITE
ERASE

FIGURE 3-2. Standard Form Smart Key Labels

THE KEYBOARD

SUPER/
SUBSCRIP

Figure 3-3 illustrates the ADAM keyboard. In addition to the
standard typewriter keys, extra keys are located above and to the right of

the main keyboard.

34 Coleco ADAM User's Handbook

•

FIGURE 3-3. The ADAM Keyboard: Standard Typewriter Keys

The keys in the top row are known as command keys (Figure 3-4).
These keys instruct ADAM to perform a variety of tasks. One of these,
the ESCAPE/ WP key, has already been used to load Smart Writer. The

other keys will be introduced shortly.
Notice that the keys labelled I through VI on the top of the keyboard

are reproduced on the display, and that a command is shown beneath
each numeral. These keys are known as smart keys. The smart keys are
unique because their functions change as Smart Writer performs different
tasks. Changing functions in this way allows a number of commands to
be entered in a single keystroke. The smart key functions change in
concert with Smart Writer so as to be of maximum benefit to the user.

The SmartWriter Word A'ocessor 35

• ·-. ·-·- - ---- ·- -·------·-- -- ·- --- - · ~

FIGURE 3-4. The ADAM Keyboard: Command Kt:ys

The last group of keys, located in the lower right hand corner of the
keyboard, are known as cursor keys (Figure 3-5). These keys enable
cursor movement in the direction indicated by the arrows, one character
at a time, without changing the existing screen text. The HOME key,
located in the center, returns the cursor to the home position.

-- - ---- - - .. _..

f.-.:.:J_~~-:r:= ~1~ :. -· ~-- .=-1- -=--
• -•- • • • _,,._ --. •~ --r-- - - --•-... - -•• -- •---,

FIGURE 3-5. The ADAM Keyboard: Cursor Keys

36 Coleco ADAM User's Handbook

Screen Options

In addition to the standard format screen, there are a number of
alternative screen formats. Smart Writer allows the user to select from a
number of color, sound level, and screen layout options.

SOUND

Smart Writer allows the user to select the desired audio level quickly
via key II: SCREEN OPTIONS. The following will be displayed when
this key has been pressed.

IIIII 111m IIDI .. --
SELECT NO PARTIAL FULL MOVING
COLOR SOUND SOUND SOUND WINDOW

Press key V to obtain full sound. With this option in force, an
audible sound will be emitted with every keystroke. Press key III (NO
SOUND) to suppress this feature.

COLOR

When Smart Writer is turned on, a blue screen will appear. To obtain
a different background color, first press key II (SCREEN OPTIONS).
As before, the keys change to:

-- IIIII IIDI .. BIii
SELECT NO PARTIAL FULL MOVING
COLOR SOUND SOUND SOUND WINDOW

The SmartWriter Word A'ocessor 37

Press key II (COLOR SELECT) - the smart labels will change to:

-- -- IIIIII ■f?I .. --
WHITE GREEN BLACK GREY BLUE DONE

If a color monitor is in use, pressing keys I through V will d isplay the
color schemes ADAM has to offer. You may, for example, prefer
WHITE (key I) for normal text entry or BLACK (key l II) for slide
preparation. Whatever choice is made, it can be placed into effect by
pressing key VI (DONE).

THE MOVING WINDOW FORMAT

Smart Writer offers an alternative to the screen format used thus far.
In the moving window format, the screen acts like a window through
which 20 rows and 36 columns of text will be visible . The main advantage
to this format is that text will be displayed exactly as it will be printed.
Figure 3-6 demonstrates the moving window.

Th• mo,int "lndow rorm• ,hown hrrt. Tht mo•int
window format ,hown htrt. ht mo,int window formal
,hown htrt. Tht mo•lnt win o• formal ,ho"n hrrr. Th•
mo•in& window formal ,ho• hrrr. Tht mo• int window
formal shown hrrr.

Tht mo• in& T • mo, Int
wlndo• for• " do• for•
mol ,hown.

Tht mo,int window form• ,hown hut. Th• mo, int
window format ,ho•n hur. t mo,lnc window format
shown htrt.

Tht mo•lnt indo• format ,hown htrt. • mo•int
•lndo• ror I ,hown htrr. Thr mo,inc win ow forma l
,hown hur. hr mo•int window formal ,ho n hut. Tht
mo,lnc wind "formal ,hown htrt. Tht mo• nt .,;ndo•
formal ,how hut.

• mo•int Tht mo,inc
ndow for• window for­

mat ,hown.

Th• mo,lnt lndow formal lhown htrr. t mo, int
window for I shown hut. Thr mo,lnt win ow formal
,hown htrr.

FIGURE 3-6. The Moving Window Format

38 Coleco ADAM User-s Handbook

To obtain the moving window format, press key II (SCREEN
OPTIONS). The smart keys will change to:

IIIII DIii 1(!1 11111 --
COLOR NO PARTIAL FULL MOVING
SELECT SOUND SOUND SOUND WINDOW

Press key VI (MOVING WINDOW). The platen will disappear, and
the text will move to the top of the screen. The cursor should be positi­
oned under the first letter in the first row. Move the cursor to the right
with the - cursor key and notice that when the edge of the screen has
been reached, the text will "jump" to the left four characters, leaving the
cursor position within the text unchanged.

Format changes are largely a matter of personal preference. Many
users find, for example, that table creation is easier in the moving window
format while jotting a short note is easier in the standard format.

To return to the standard format, press SCREEN OPTIONS (II)
and then STANDARD FORMAT (VI).

File Handling

In pre-computer days, letters or memos were created with a typewri­
ter, pen, or pencil and a piece of paper. Once a large collection of letters
was amassed, some form of organization, storage, and retrieval became
necessary. The most conventional form of organization was the file
cabinet. With a computer, data can be entered at a keyboard and stored
on some form of magnetic media. A form of computer storage has
evolved which mimics a file-cabinet type of organization.

The SmartWriter Word Processor 39

CREATING AND STORING A FILE

Enter the fallowing text on the keyboard:

Whether 'tis nobler in the mind to
suffer the slings and
arrows of outrageous fortune, or to
take arms against a sea
of troubles, and by opposing end
them?

Type quickly and if a mistake is made, ignore it for now. We will
return later and fix it.

Notice that pressing the RETURN key was not necessary when the
end of a display line was encountered . This feature in known as word
wrap. With it, entire paragraphs can be entered without ever having to hit
the RETURN key.

Notice also that each line is broken into two parts. Since your screen
only allows 40 characters, this feature allows the user to view an entire
standard line on your screen.

To save data written as a file, a Digital Data Pack must be inserted
into its drive, as shown in Figure 3-7.

I II J ; I •

II I II I I II I I I I I 1111111 I I 111 I I I II I I\\\ I\

11111,,,,,,,1111Jt1111111 -------- --'

FIGURE 3-7. Inserting the Digital Data Pack

40 Coleco ADAM User's Handbook

Next, press the STORE/ GET command key located in the upper
right-hand corner of the keyboard . Notice that the labels below the smart
keys changed as shown below. The old commands are no longer applica­
ble. The new commands denote the current options.

lllII -- .. IUII
STORE STORE STORE GET
HI-LITE SCREEN WK-SPACE

Press key V (STORE WK-SPACE) and note that the smart keys
change again as shown below.

lllII -- -- 11111
DRIVE A

This new set of keys allow data to be stored in a number of ways.
Press key Ill (DRIVE A) to prepare ADAM to write data on the Digital
Data Pack. The smart key display will change again. This time a filename
will be requested. Data will be stored under the name chosen. Any name
may be used as long as it contains ten characters or less. It is often helpful
to use a mnemonic name, that is, a name that serves as a reminder of the
file contents. Enter HAMLET for this example.

The SmartWrtter Word Processor 41

-
FOR A NEW FILE IIIIII .. -- 111111
TYPE Fl LENA ME STORE
DRIVE A WK-SPACE

To activate the storage procedure, press key VI (STORE WK­
SPACE). A soft whirring sound will be audible as the data is recorded on
the Digital Data Pack.

RETRIEVING A FILE

Now that HAMLET has been written to the Data Pack as a file,
ADAM can be powered off without the permanent loss of the data in
HAMLET. Remember to remove the Data Pack before turning the
computer off.

To demonstrate that HAMLET has been stored, first ADAM's
memory will be cleaned. Then, HAMLET will be reloaded into ADA M's
memory from the Digital Data Pack. To clear ADA M's memory, press
the CLEAR command key. The smart keys will change as shown below.

.. --CLEAR CLEAR
SCREEN WK-SPACE

Press key VI (CLEAR WK-SPACE). SmartWriter will display a
prompt asking the user to verify that the workspace contents are to be
erased. Reply by pressing key VI (FINAL CLEAR). The screen will
return to the standard format .

CLEAR WORKSPACE, ARE YOU SURE? FINAL
CLEAR

42 Coleco ADAM User's Handbook

Insert the Digital Data Pack into its drive . Execute Smart Writer by
pressing ESCAPE/ WP.

To recall the file, press the STORE/ GET key. As always, the smart
key display changes to reflect available options:

11111:m IIDII -- --
STORE STORE STORE GET
HI-LITE SCREEN WK-SPACE

Press key VI (GET), followed by key Ill (Drive A). The Digital Data
Drive will whirr for a few seconds and a file directory of drive A will be
presented. The directory should only contain the entry HAM LET as
shown below:

FILE DIRECTORY

► HAMLET

SELECT FILE NAME llll -- --DRIVE A SELECT BACKUP GET
USE ARROW KEYS DRIVE FILE DIR FILE

The SmartWrtter Word A'ocessor 43

To recall the file. first use the cursor movement keys to move the
cursor to the file entry HAMLET. Read the file into memory by pressing
key VI (GET FILE). The text entered earlier should re-appear.

BACKUP FILES

It is a good practice to create a backup of a file before editing the
original. The SmartWriter designers understood this and included a
backup feature.

When HAMLET was first saved. only one version existed. A
backup can be created by resaving the original file . This can be accomp­
lished with the fallowing sequence.

STORE/GET
V:STORE WK-SPACE

111 :DRIVE A
Vl :STORE WK-SPACE

Note that in the last step it was not necessary to enter the file name -
Smart Writer uses the name of the last file called by STORE/ GET. If you
try to enter HAM LET, for example, Smart Writer will reply:

am
THE FILE ALREADY EXISTS

.. BIi
USE ANOTHER NAME STORE

WK-SPACE

When you entered the backup sequence ADAM's Digital Data
Drives should have engaged and written a file. To check this enter:

STORE/GET
Vl :GET WK-SPACE
111 :DRIVE A
V:BACKUP FILE DIR

44 Coleco ADAM User's Handbook

You should see the following:

BACKUP DIRECTORY

HAMLET

SELECT FILE FROM -- .. MIi
DRIVE A SELECT FILE GET
USE ARROW KEYS DRIVE DIR FILE

If another drive is connected, it can be selected by pressing key IV
(SELECT DRIVE), to return to the main directory, press key V (Fl LE
DIR). The backup file can be loaded into the workspace by pressing key
VI (GET FILE).

Either the file or backup directory can be exited directly to Smart­
Writer's workspace by pressing the ESCAPE key.

Since HAM LET is already present in our workspace and the backup
is identical to the original, we can go back without having to read the file
from the Digital Data Pack by pressing the ESCAPE key.

EDITING FILES

Once a backup has been created, a file can be safely edited. There are
five general catagories of editing tools:

1) Cursor movement
2) Text replacement
3) Text deletion
4) Text insertion
5) Text movement

As will be evidenced shortly, these tools may be applied to single
characters, words, blocks of text, or even files.

The SmartWriter Word A'ocessor 45

CURSOR MOVEMENT

The cursor control keys allow the cursor to be moved around a
Smart Writer file. To use these keys, first bring the file named HAMLET
into the workspace. Try experimenting with the cursor keys by them­
selves. The following will soon be evident:

♦ :Moves the cursor up by one line.
:=::::::::::::=:::::::

:Moves the cursor to the right by one character.
===::::::: t :Moves the cursor down by one line.

:==~===: :Moves the cursor to the left by one character.

HOME :Moves the cursor to the top line of text on the screen.

The cursor movement keys offer a relatively efficient means of
moving a file . However, SmartWriter allows more rapid movement by
simultaneously pressing the HOME and arrow keys. For example, if the
cursor is positioned at the beginning of a line and HOME+ - is pressed
(that is, press HOME and - at the same time), then the cursor should
move to the right hand side of the screen. The fast movement combina­
tions are shown below:

I HOME rill :Moves the cursor to the top of the platen and brings the
top line of screen text onto the platen. In the moving
window format, moves the cursor to the top of the screen.

~ :Moves the cursor to the right hand side of the platen. In
the moving window format, moves the cursor to the right
edge of the screen.

I HOME HI] :Moves the screenful of text below the platen onto the
screen. In the moving window form at, the cursor is
moved to the bottom of the screen.

I HOME rB :Moves the cursor to the left hand side of the platen. In the
moving window format, it is moved to the left edge of the
screen.

One important fact to bear in mind is that the cursor keys cannot
actually create new lines, even though the screen may indicate that they
have done so.

46 Coleco ADAM User's Handbook

Smart Writer behaves differently in the moving window format t han
it does in the standard format, so cursor movement in both formats will
be described. In the standard format, the cursor keys can be used to move
beyond the last line of text entered. Additional text can then be added.
That text will remain if the file is saved. However, any additional blank
lines "created" with the cursor keys will vanish. To examine this, use the
cursor keys to move seven lines down from "them?", and STORE this
under the name SEVEN with:

STORE/GET
V:STORE WK-SPACE

111:DRIVE A
SEVEN (You must type this)

Vl :STORE WK-SPACE

t ow, CLEAR the workspace with:

CLEAR .
Vl:CLEAR WK-SPACE
Vl:FINAL CLEAR

Bring SEVEN back into your workspace with:

STORE/GET
Vl:GET WK-SPACE
111:DRIVE A

SEVEN (Use cursor keys)
Vl :GET WK-SPACE

By moving to the end of the file with the cursor keys, it will be
apparent that "seven" appears directly below "them?".

In the moving window format, the cursor keys can also be used to
move beyond the last line of text entered. In this mode, neither the new
lines nor the new text will be saved. CLEAR the workspace as shown
above. Then, enter the following command sequence to display the
directory:

STORE/GET
Vl:GET WK-SPACE
111:DRIVE A

Use the cursor keys to position the ► next to the file named SEVEN
and delete it with:

DELETE
Vl :FINAL DELETE

Now, position the cursor next to HAMLET and bring it into the
workspace with key VI (GET FILE). If the ADAM is not already in the

The SmartWrtter Word A'ocessor 4 7

moving window format, this format can be entered as follows:

11:SCREEN OPTIONS
Vl:MOVING WINDOW

If text is added to HAMLET in the same manner described under
the standard format, when the file is retrieved , it will be evident that
nothing was added to it.

TEXT REPLACEMENT

To illustrate text replacement, use the cursor keys to move to the end
of HAMLET. Add:

-to die, -to sleap

Wait- .. sleep'' is misspelled. To fix it.just bring the cursor to the .. a,,
in .. sleap" and press .. e ... The .. a,, will be replaced. Any text can be
replaced in this manner by simply typing over the old text.

TEXT DELETION - BACKSPACE

To illustrate text deletion, add the following text to HAMLET:

To sleep peacefully, perchance to dream-

The word ''peacefully" doesn't belong. To delete it, position the cursor to
the comma following "peacefully". Each time the BACKSPACE key is
pressed, a character will disappear. Continue pressing BACKSPACE
until "peacefully" has been deleted.

TEXT INSERTION

Suppose a line was to be added to HAMLET. The first step would be
to position the cursor at the beginning of the file. This can be accomp­
lished by pressing the HOME cursor key.

Next, press the INSERT command key to enter the insert mode.
Existing text will be erased and the fallowing smart key labels will be
displayed.

INSERT --TYPE TEXT END SUPER/ DONE
PAGE SUBSCRIPl

48 Coleco ADAM User's Handbook

Type:

To be or not to be, -that is the
question:-

Then, enter the text by pressing key VI (DONE). The following text
should then appear.

To be or not to be, -that is the
question:-Whether 'tis
nobler in the mind to suffer the
slings and arrows of

FINDING TEXT

Although the cursor keys can be used to move to a specified position
within a file, generally key III (SEARCH) is a more efficient means of
doing so. To illustrate the use of SEARCH, we will scan HAMLET for
the word "Whether".

Go to the beginning of the file by pressing the HOME cursor key.
Next, press key III (SEARCH). The smart keys will reappear as shown
below:

-
SEARCH FOR:

an
START

SEARCH

Enter "Whether" and then press key VI (START SEARCH). The
cursor should be positioned at the W in "Whether", as shown below:

To be or not to be, that is the
question:-Whether 'tis

SEARCH FOR WHETHER BIii
SEARCH COMPLETE SEARCH

NEXT

.. ..
REPLACE DONE

The SmartWriter Word Processor 49

In this case, we only want to find '"Whether" once, so press key VI
(DONE).

SEARCH does have some limitations. One of them is that it does
not differentiate between upper and lowercase letters. For example, if
Mac Duff was the object of the search, the cursor would be positioned at
MACDUFF, Macduff, or mACDUFF. The other limitation to SEA­
RCH is that it will not accept non-alphabet characters . In other words,
SEARCH could not be used to locate $10.00 or(#@&% !).

G~tting back to our example, suppose that we wished to place
"Whether" on a separate line . We could do so by inserting a carriage
return. Our first step would be to press the INSERT key. The smart keys
will change as follows:

IDI .. 11D
INSERT
TYPE TEXT END SUPER/ DONE

PAGE SUBSCRIPT

Our next step is to press the RETURN key. This ca uses the symbol ◄
to appear just prior to "Whether". The insertion of the carriage return will
cause the text beginning with "Whether" to appear on a new display line.
Press key VI (DONE) at this point to exit the insert mode.

ESCAPE AND UNDO

Suppose that you intended to SEARCH (key Ill) for a word but
accidentally pressed key II (SCREEN OPTIONS). Such errors occur
regularly - a fact that Smart Writer designers recognized. To hand le this
type of error, simply press the ESCAPE/ WP key, and the standard menu

will reappear.
To illustrate the usage of UN DO, move through HAM LET until the

cursor has been positioned over the "W" in "Whether". This can be
accomplished by using either the cursor control keys or the SEARCH

50 Coleco ADAM User's Handbook

feature. Use the BACKSPACE key to delete several characters. If the
UNDO key is subsequenly pressed, "Whether" will reappear.

Note that UNDO only works on text changes. If, for example, the
margins were reset and UN DO was pressed, nothing would happen. This
type of error must be repaired by re-entering the correct MARGIN/­
TAB/ ETC sequence.

TEXT MOVEMENT

It is often useful to move a block of text to a new location. A block of
text may consist only of a single character or as many as several pages.

To illustrate the use of MOVE/ COPY let's make up a new file
consisting of an address list. If you wish to save HAMLET, do so now
using:

STORE/GET
V:SAVE WK-SPACE

11I:DRIVE A
Vl:SAVE WK-SPACE

Clear the workspace with:

CLEAR
Vl:CLEAR WK-SPACE
Vl:FINAL CLEAR

Enter the following text:

Mr. A Baker◄
3030 Dune Dr. ◄
Reno, NV 34567 ◄
◄

Mr. R. Able◄
2020 Tundra Dr. ◄
Anchorage, AK 23456◄
◄

Mr. B. Conte◄
1010 Sundrench Ave. ◄
Miami, FL 12345◄

This text could be the beginning of a large mailing list. If it were, it
would probably be most convenient to place the names in alphabetical

The SmartWriter Word A'ocessor 51

order. To do so, first press the MOVE/ COPY key. The smart keys will
change to:

.. 1111
MOVE COPY

Press key V (MOVE), which changes the keys again:

HI-LITE FIRST AND LAST llll 1111 QJI
CHARACTER OF TEXT TO HI-LITE HI-LITE HI-LITE
BE MOVED FIRST LAST ERASE

Position the cursor beneath the .. M" in Mr. R. Able. Then, press key
IV (HI-LITE FIRST). Now, move the cursor to the ◄ symbol located
below the .. A" in Anchorage and press key V (HI-LITE LAST). The text
will momentarily be underlined, then disappear. The smart keys then
change to:

MOVE:
MOVE CURSOR TO NEW LOCATION MOVE

52 Coleco ADAM User's Handbook

Move the cursor to the .. M" in Mr. A. Baker then press key VI
(MOVE). The text should appear as shown below:

Mr. R. Able◄
2020 Tundra Dr. ◄
Anchorage, AK 23456◄
◄

Mr. A. Baker◄
3030 Dune Dr. ◄
Reno, NV 34567 ◄
◄

Mr. 8. Conte◄
1010 Sundrench Ave.◄
Miami, FL 12345◄
◄

Store this file with the name ADDRESS. We will access this file later as
we continue our mailing list example.

SAVING HIGHLIGHTED TEXT TO A FILE

It is often useful to designate sections of a document for special
operations. Smart Writer uses a procedure called highlighting to perform
this function. The HI-LITE mode is used to specify a section of a
document to be printed, saved, or relocated within a file.

For example, consider the situation in which a standard form letter
is to be customized for each recipient. This procedure can be perf armed
quickly and easily through the use of the HI-LITE feature.

The HI-LITE mode can be selected with the smart key labeled
IV:HI-LITE. When this selection is chosen, the label will change from
HI-LITE to HI-LITE OFF. This allows the same key to be used to cancel
the HI-LITE mode. When the HI-LITE mode is in effect, any typed
characters will be underlined. Characters can also be underlined through
the use of the cursor control keys. For example, if the cursor originally
appears at the beginning of a line, the - key can be used to underline the
text on that line.

A similar procedure is used to remove the underlining. The smart
key labeled V:HI-LITE ERASE allows the underlining to be removed.
When this mode is selected, the cursor can be used to remove the
underlining from a character.

Practice using the HI-LITE feature by loading the ADDRESS file
into the workspace. Move the cursor to the beginning of the line that

The SmartWrtter Word Processor 53

contains the words Mr. A. Baker. Press the smart key labeled IV:HI­
LITE. Proceed by using the - key to move the cursor to the end of the
line. The entire line should now be underlined. Use the cursor control
keys to underline the remainder of Mr. Baker's address.

Now that Mr. Baker's address has been underlined, let's save it on a
file. First, press STORE/ GET. The smart keys will respond with:

111m llilll IOI IDII
STORE STORE STORE GET
HI-LITE1 SCREEN WK-SPACE

Enter Ill (STORE HI-LITE). After responding to the drive prompt,
enter TEMP as the name of the temporary file. Wait a few moments for
the file to be written to the Digital Data Pack.

Example: A Form Letter

CLEAR the workspace with the CLEAR/ VI:CLEAR WK-SPACE/­
VI:FIN AL CLEAR sequence. Copy the following text:

Dear Mr. zz◄
◄

July 4, 1984◄

I am pleased to announce the availability of our new and improved
widget. Our super new design assures you of years of trouble free
operation. ◄

◄

Mr. zz, I am so sure that you will be delighted that I have sent a sample
widget for you to examine for a two week trial period. ◄
◄

I would like to take this opportunity to thank you for you past
patronage, and hope that our new design helps make your life a little more
enjoyable. ◄

◄

Sincerely,◄

I. M. Greedy,◄
President, Amalgamated Widgets

54 Coleco ADAM User's Handbook

Save this text under the name FORM LET with STORE/GET/ V:SAVE
WK-SPACE/ 111:DRIVE A/VI:SAVE WK-SPACE. Notice that we
never used names in writing FORM LET, only the letters '"zz".

Position the cursor to the beginning of the file with the HOME key.
Press key III (SEARCH)and answer"zz"to the prompt of text to search
for. Complete the command sequence by pressing the smart key labeled
VI:START SEARCH followed by VI:DONE. Press STORE/GET/­
VI:GET/ 111:DRIVE A and move the cursor to the file TEMP you
created earlier. Press key VI (GET FILE). The Digital Data Pack will
require about 15 seconds to locate the file and bring it into the workspace.
The fallowing display will appear:

July 4, 1984◄

Mr. A. Baker◄
3030 Dunc Dr. ◄

Reno, NV 3456 7 ◄
◄

Dear Mr. zz◄
◄

I am pleased to announce the availability of our new and improved
~idget. Our super new design assures you of years of trouble free
operation.◄

◄

Mr. zz, I am so sure that you will be delighted that I have sent a sample
widget for you to examine for a two week trial period . ◄
◄

I would like to take this opportunity to thank you for your past
patronage, and hope that our new design helps make your life a little more
enjoyable. ◄

◄

Sincerely,◄

I. M. Greedy, ◄
President, Amalgamated Widgets

First, use the cursor keys and backspace to remove the line "zz ◄ ".
Then, to finish this letter, replace the next two occurrences of "zz" with
the name "Baker". One way of doing this (by now you can probably think

The SmartWriter Word Processor 55

of three other ways) is to press III :SEARCH / YI:START SEARCH / ­
V:REPLACE/ BAKER/ YI : REPLACE ALL. The two " zz" occurrences
should now be repla ced with " Baker". Notice that it was not necessary to
re-enter the pattern "zz" to SEARCH. That is an old pattern will remain
in order within the SEARCH buffer until it has been replaced.

To save this workspace, remember that the last file accessed was
TEMP. If a new name is not entered in response to the STORE sequence
prompt, then this file will be saved as TEMP. Save the file as BAKER.

Printing Text

Outputting text to the printer using Smart Writer is a simple process.
To illustrate this, bring the file named BAKER into the workspace.

Pressing the PR I NT key changes the smart keys to:

PRINT !
I D([I I IDI -- IDI

I-'
PRINT PRINT PRINT OPTIONS I

j HI-LITE SCREEN WK-SPACE

- --

Pressing key V (PRINT WK-SPACE) changes the keys again:

I I]] ~, 1 111
SINGLE

111111 -- ID■
SHEET FAN 1st PAGE AUTO PRINT

FOLD IS 1 PAGE#?

Before printing, insert a sheet of paper and center it on the roller.

The amount of paper protruding above the print head should equal the

top vertical margin (explained later). Since the default top margin is set

to 6 lines (or 1 inch), this amount of paper should protrude above the

print head. If the top vertical margin is later changed (as explained later),

the paper must be advanced appropriately.

56 Coleco ADAM User's Handbook

When the V key is pressed, the workspace contents will be output to
a standard 8½ x 11 inch sheet of paper. After a page has been filled, the
printer will pause so as to enable the operator to insert a new sheet. After
this sheet is in position, printing can be resumed by pressing the V key
(PRINT).

If a lengthy file is being output, you may wish to use fanfold paper in
order to avoid having to insert a new sheet of paper for each page.
Fanfold paper is a roll of paper which has been folded into a standard 8½
x 11 inch size and is perforated so that it can be easily separated. Press key
II when fanfold paper is being used . When this option is selected,
Smart Writer will automatically advance from one page to the next using
the vertical margin specified .

SmartWriter allows for automati~ page numbering with key IV
(AUTO PAGE#). When this key is pressed, pages will be numbered in
their upper right hand corner. Key II (FIRST PAGE IS I) can be used to
begin page numbering with a page other than I. For example, to begin
numbering with page 5, press key III four times. Notice that the auto­
repeat feature does not work with this key.

If a printout must be stopped for some reason, press key V (STOP
PRINT). Printing can be resumed by pressing this key again.

Formatting Text

So far, the text that we have prepared has been of standard format.
By this we mean that it is single spaced on 8½ x 11 inch typing paper with
standard margins. SmartWriter allows these defaults to be changed
before or after the text has been written.

MARGINS

SmartWriter has default horizontal margins set at IO and 70. As
mentioned previously, these are visible as red marks on the horizontal
margin scale. To change the left margin, first press key I (MARGIN/­
TAB/ ETC). The following labels will appear:

The SmartWrlter Word A'ocessor 57

IOI -- 11D llll 1111 .,,
TYPE OF HORIZ VERT TAB LINE END
PAPER MARGINS MARGIN SPACING PAGE

Next, press key II (HORIZ MARGIN). The following labels will appear:

mm BIi .. 1111
HORIZ MARGINS LEFT RIGHT TO VERT

10 70 MARGIN DONE

To change the left margin, first press key Ill. Notice that the smart key
labels do not change, although the message at the left does:

HORIZ MARGINS
11[[1 1111

USE ARROW KEYS LEFT RIGHT TO VERT DONE
10 70 MARGIN

The - and - keys may now be used to adjust the left margin.
Pressing the - key moves the margin to the right, while pressing the - key
moves the margin to the left. Pressing key IV allows the right margin to be
moved in the same manner. The current value of the left margin is
displayed in label box Ill. The value of the right margin is displayed in
label box IV.

Use the cursor keys to change the left margin to 40. Lefs use this
setting to address an envelope. First, clear the workspace with CLEAR/­
VI:CLEAR WK SPACE/ Vl:FINAL CLEAR. Next, return the file
named TEMP (which should still contain Mr. Baker's address) with
STORE/GET/VI:GET/ 111:DRIVE A/TEMP/Vl:GET FILE.

Examine the horizontal margin scale. Notice that the horizontal
margin markers have been reset to their default position. When a file is
retrieved and brought into the workspace, its format setting will also be
retrieved as well. This point is important to remember when working with

58 Coleco ADAM User's Handbook

files. It is a good idea to always recheck the horizontal and vertical margin
markers when a file is read into the workspace.

We can now print the address on the envelope. Change the left
margin with I:MARGIN/TAB/ETC/11:HORIZONTAL MARGIN/­
II I:LEFT I 0/ ... /III: LEFT 40/ VI: DONE. Next, insert an envelope into
the printer and print the address using PRINT/ V: PRINT WK SPACE/ ­
V:PRINT.

If the workspace was cleared, remember that the formats just set will
still be in effect. If a new file is to be set with stand a rd defaults, either the
left margin must be reset or the RESET COMPUTER switch must be
pressed followed by ESCAPE/ WP.

Margin settings can be of value in the moving window format in that
they can be set so as to allow all of the text to be visible without using the
cursor keys. Change to the moving window format with 11 :SCREEN
OPTIONS/ VI:MOVING WINDOW. Since each line holds 36 chara­
cters, one way of seeing them all is to set the right margin to 46 with
I:MARGIN/TAB/ ETC/ 11:HORIZ MARGIN/ IV: RIG HT 70/ ... / IV:­
RIGHT 46/Vl:DONE.

Once the margin has been set, clear the workspace and enter the
fallowing:

Four score and seven years ago our
fathers brought forth on this
continent a new nation conceived in
liberty and dedicated to the
proposition that all men are created
equal. Now we are engaged in a great
civil war testing whether that nation
or any other nation so conceived or
dedicated can long endure.
We are met on a great battlefield of that
war. We have come to dedicate a
portion of that field as a final
resting place for those who here gave
their lives that this nation may
live. It is altogether fitting and
proper that we should do this

Now return the right margin to its default value with I: MAR­

GIN/TAB/ ETC/ 11:HORIZONTAL MARGIN/ IV: RIG HT 46/ ... / IV:-

The SmartWriter Word Processor 59

RIGHT 70/Yl:DONE. The entire workspace was automatically re­
shaped to the new margin.

The vertical margins may also be changed with the MARGIN/
TAB/ ETC key. The standard margin setting are 6 lines at the top and
bottom. This allows approximately one inch of clearance. To set the top
margin at 9 lines (about I½ inches), begin by pressing key I (MARG INS/
TAB/ ETC):

1 00 J 111m
TYPE OF HORIZ VERT TABS

PAPER MARGIN MARGIN
LINE

SPACING

BIi
END

PAGE

Next, press key III (VERT MARGIN). The following will appear:

t. JUO l!H 1111 -- BIi
VERT MARGIN TOP BOTTOM · TO HORIZ DONE

5 78 MARGIN

To change the top margin, press key II I. Notice that the message at the left
changes:

VERT MARGINS
USE ARROW
KEYS

II[II
TOP

5

lill --
BOTTOM TO HORIZ

78 MARGIN
DONE

Using the t and 1 keys, change the top margin to 9. These keys are
used in a manner similar to the usage of the - and - keys with the
horizontal margin. To change the bottom margin, first press key IV.
Then, use the t and 1 keys.

60 Coleco ADAM User's Handbook

ENDING A PAGE

It is often convenient to end a page before it has been completely
filled with text. One means of doing so would be to continue pressing
RETURN until the vertical cursor marker had traveled from the bottom
of the scale to the top. Smart Writer makes the job a bit easier with the
END PAGE command. We'll use an example to illustrate END PAGE
usage. First, CLEAR the workspace and enter the foil owing text:

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

◄

How I Spent My Summer Vacation la

The SmartWriter Word Processor 61

Don't bother to count the ◄ 's, just press the RETURN key until the
vertical cursor marker has descended to the half-way hash mark . To end
the page, first press key I (MARGIN / TAB/ ETC). This will generate the
following labels:

IOI -- lllIII 11.m IDI B1111
TYPE OF HORIZ VERT TABS LINE END

PAPER MARGIN MARGIN SPACING PAGE

Press key VI (END PAGE). An end page marker, ~ , will appear

after '"Vacation". This marker indicates that the page will end here. Move
to the next line using the cursor keys and enter the following:

After climbing Mt. Everest and
swimming the English Channel, I
was about to cross the Sahara on a
special reconnaissance mission
when I stopped to ask myself
. .. why am I doing all this? . ..

Now, print the workspace with PRINT/ V:PRINT WK SPACE/ ­
Y:PRINT. After the title (How I spent ...) has been output, the printer

will pause. At this point, insert a new piece of paper and press key V

(V:PRINT).

CHANGING PAPER SIZE

Although the standard I I inch format is suitable for most applica­

tions, Smart Writer allows this default value to be changed to legal size,

which is 14 inches . To do so, first press key I (MARGIN / TAB/ ETC):

.. IIIII IIlll IIDII 1111 llDI
TYPE OF HORIZ VERT TABS LINE END

PAPER MARGIN MARGIN SPACING PAGE

62 Coleco ADAM User's Handbook

Pressing key I (TYPE OF PAPER) changes the labe ls to:

PAPER
LETTER LETTER LEGAL TO VERT DONE

11 14 MARGIN

Pressing key IV (LEGAL 14) ca uses the message a t the left of th
smart key la bels to cha nge from "PAPER LETTE R" to "PAPE!

LEGAL". After pressing key VI (Vl:DONE), a " 14" will be a va ilable,
the top of the vertical margin sca le . Lega l size pa pe r ca n now be used wit

ADAM's printer.

CHANGING LINE SPACING

So far all of our tex t has been printed using sing le s pacing. Smarl

Vriter allows up to 84 lines of spacing with I / 2 s pace interva ls. To a lte
spacing, begin by pressing key I (MARGIN / TAB / ET C):

11111 llll •••• (I]\2 .1 I \Vi I [1D
TYPE OF HORIZ VERT TABS LINE END

PAPER MARGIN MARGIN SPACING PAGE

Press key V (V:LINE SPACING). The sma rt key la be ls will change to:

11111
LINE SPACE 1

UP DOWN DONE

The SmartWrtter Word A'ocessor 63

To increase line spacing, simply press key IV (UP). The label at the left
will reflect a I/ 2 line increase:

llll
LINE SPACE 1 ½

UP DOWN DONE

Likewise, pressing key V (DOWN) will decrement the line spacing by I/ 2.

SUPER- AND SUBSCRIPTING

Suppose you are writing a chemistry report and wish to show the
chemical formula for 2 amino-I phenylpropane:

This can be easily output with Smart Writer. Enter C followed by key VI
(SUPER/SUBSCRIPT). The smart key labels will change as follows:

PRESS V OR VI FOR
SUPER OR SUBSCRIPT SUB SUPER

SCRIPT SCRIPT

Press key V (SUBSCRIPT):

TYPE SUBSCRIPT TEXT
DONE

64 Coleco ADAM User's Handbook

Type in the 6 and then press key VI (DONE). Notice that the special
characters .. L., and .. _j" surround the subscripted text. Finish entering
the normal and subscripted text and then center it using INSERT. The
SUPER/SUBSCRIPTfeature only works if the line spacing had been set
to I½ or more. Final text should resemble that shown below:

NHL 2 _j◄

I ◄

CL6~HL5~CHL2~CHCHL3~

Superscripts are written in the same manner, except that the special
characters which surround the text are ··r., and •• 7".

TABS

Smart Writer makes table preparation a cinch. As mentioned earlier,
the moving window is appropriate for this kind of work, so change to this
format now.

Suppose that we wanted to create a computerized calendar. One way

of accomplishing this would be to make a 7 x 5 grid and fill in the
numbers for any particular month. Tabs would be a great help in

constructing these grids. The default tabs are set every 5 spaces, but these
are easily changed. To see this, press key I (MARGIN / TAB/ ETC):

-- 11111 IIIm .,. k., \f 'J ml
TYPE OF HORIZ VERT

TABS
LINE END

PAPER MARGIN MARGIN SPACING PAGE

Press key IV (TABS):

TAB POINTER 10 ■11■ Ell .. IDII
USE ARROW KEYS TAB TAB ALL DONE SET CLEAR CLEAR

The SmartWriter Word Processor 65

Cursor movement with the arrow keys is reflected in the message to
the left of the smart key labels. The left hand margin should be set at 10
and the right at 70 unless these had been changed using the MARGIN
command. The default tabs, which are set every 5 spaces, are visible as
white dots on the horizontal margin scale. A tab can be set by simply
moving to the desired position and pressing key Ill (TAB SET). Errors
can be cleared by moving the cursor to the unwanted tab and pressing key
IV (TAB CLEAR). For the purpose of our example, enter 10, 18,26,
34,42,50,58, and 66. Fix these settings by pressing key. VI (DONE). Enter
the foil owing lines using the tab to position the cursor:

◄

◄

◄

~ first

This grid could be finished by hand, but it would be easier to use the
MOVE/ COPY command to copy a repeating portion. HI-LITE the
characters circled as .. first" and .. last". Then, bring the cursor to the
location indicated by .. x". COPY this block of text four times, always
remembering to return the cursor to the southwest corner of the text.

To add day labels, bring the cursor to the RETURN marker (◄)just

above the northwest corner of the calendar. Use the space bar to .. push"
the marker to the center of the first column and type .. S,, for Sunday. Do
the same for the rest of the days of the week. The top of your file should
resemble the fallowing:

66 Coleco ADAM User's Handbook

◄

◄

◄

-....... --· -. --......... -....... --. --. -------.. -. --.... -... -......... -. -.... -----------....... -............ .
s M T w T F S◄ ········-·············· -...... --.......... ----. --. ----- ------.... ----....... .

Use the TAB key and the~cursor key to position the cursor while
entering the dates. Short reminders can be written in the blocks. If an
incorrect entry was made, it is probably easier to use the cursor keys and
overtype than it is to INSERT the text vertical lines. The final product
should resemble that depicted below:

◄

◄

◄

s

I
I
I

M T w T F S◄

I I
. 1 •... . ••....................... ••••. . •••••• ••••••••••.••.••••.•...... •.• I

4 1
I
I
I

5: 71 8 ' I
I
I

91 lO j

I
I
I

• ••••• ••••••••• • •••••• • ••••.•• • •••.• ... •.••. •••.•••.•••••••.•...•••••• • ••••• • • ••••••••••••••••••• • •• • ••••••••• • • ••• •.•••• I

II 12 1 13 j 141 151 161 11 :
I I I I
I I I I
I I I I
1 I I I
I I I
I I I -········ -----------.... ----... -· -------- ----. ---. -.. ----.... ----

18 l 19 I
I
I
I
I
I
I

20 21 22 j
Schools

Out

23 24

25 : 26 I 21 : 28 I 29 I 30 I 31
Christmas : l j New Years

l I j Eve Party
I I ·········-···· ------........... ---------------------. ---------........ ----------··-·····

The SmartWrtter Word Processor 67

Overview: The Smart Keys Revisted

By now we hope that you feel comfortable using SmartWriter.
Although the command entry sequence might seem confusing at first , it is
actually quite simple.

When entering a command sequence, the entry proceeds from a
general command such as SCREEN OPTIONS to a very specific one,
such as setting the screen color to WHITE. This process can be envis­
ioned as a journey up the branches of a tree, from th·e broad subject of
SCREEN OPTIONS to the narrow specification of screen color to
WHITE.

Figure 3-8 depicted the tree structure of the standard menu. As you
can see, any command can be executed with at most four keystrokes.
Since this information is displayed during the command entry process,
there is no need to memorize the chart. One option not listed in Figure 3-8
is EXCAPE/ WP. This option, which is available at every node of the
tree, returns Smart Writer to the "trunk", or standard menu.

Figures 3-9 through 3-14 show the structures of the MOVE/ COPY
STORE/ GET, CLEAR, INSERT, PRINT, and DELETE commands
respectively. We hope that these will serve as a quick reference guide to
the commands introduced in this chapter.

68 Coleco ADAM User's Handbook

FIGURE 3-8. Standard Menu Command Structure

PAPER LETTER
11I:LETTER 11

l:TYPE OF PAPER IV:LEGAL 14
V:TO VERT MARGIN

Vl:DONE

HORIZ MARGINS
HORIZ MARGIN USE ARROW KEYS

11I:LEFT/10 ~11:LEFT 10
11:HORIZ MARGIN IV:RIGHT/76 IV:RIGHT 76

V:TO VERT MARGIN V:TO VERT MARGIN
Vl:DONE Vl:OONE

VERT MARGIN
11I:TOP 5

l:MARGIN/TAB/ 111:VERT MARGIN IV:BOTTOM/78
ETC V:TO HORIZ MARGIN

Vl:OONE

TAB POINTER 10
USE ARROW KEYS

~

11I:TAB SET
IV:TABS ------+--IV:TAB CLEAR

V:ALL CLEAR
Vl:OONE

LINE SPACING 1
V:LINE SPACING~IV:UP

V:DOWN
Vl:DONE

Vl:END PAGE

4
11:SELECT COLOR~ l:WHITE

I11:NO SOUND 11:GREEN
11:SCREEN IV:PARTIAL SOUND 11I:BLACK

OPTIONS V:FULL SOUND IV:GREY
V:BLUE

Vl:DONE

SEARCH FOR: text
SEARCH COMPLETE

VERT MARGINS
USE ARROW KEYS

I11:TOP 5
IV:BOTTOM 78
V:TO HORIZ MARGIN

Vl :DONE

SEARCH FOR: -EIV:SEARCH NEXT SEARCH FOR text

Vl:DONE TYPE TEXT
I11:SEARCH ---Vl:START SEARCH V:REPLACE ~ REPLACE WITH

• l:MARGIN/TAB/ETC
11:SCREEN OPTIONS

IV:HI- LITE 11:SEARCH
V:HI-LITE OFF
V:HI-LITE ERASE

Vl:SUPER/SUBSCRIPT

l:MARGIN/TAB/ ETC
11:SCREEN OPTIONS

V:HI-LITE ERASE 11:SEARCH
V:HI-LITE
V:ERASE OFF

Vl:SUPER/SUBSCRIPT

V:REPLACE
Vl:REPLACE ALL

Vl:SUPER/SUBSCRIPT

The SmartWriter Word Processor 69

PRESS V OR VI
FOR SUPER OR SUBSCRIPT TYPE SUBSCRIPT TEXT

V:SUBSCRIPT Vl:DONE
Vl :SUPERSCIPT7__

TYPE SUPERSCRIPT TEXT
Vl:DONE

FIGURE 3-9. MOVE/ COPY Command Structure

STANDARD MENU
HI-LITE FIRST AND LAST
CHARACTERS OF TEXT TO
BE MOVED

...---V:MOVE ---..-----IV:HI-LITE FIRST
.,_ ___ V:HI-LITE LAST
'----v1:HI-LITE ERASE

HI-LITE FIRST AND LAST
CHARACTERS OF TEXT TO
BE COPIED

----Vl:COPY ---...---- IV:HI-LITE FIRST
1-----V:Hl-LITE LAST

Vl :HI-LAST ERASE

FIGURE 3-10. STORE/ GET Command Structure

STANDARD MENU

STORE/GET I---~

STORE FOR A NEW FILE
SELECT DRIVE TYPE FILE NAME

111:STORE HI-LITEElll:DRIVE AL§DRIVE A
IV: Ill:
V: V:

VI : V:
Vl:STORE HI-LITE

FOR A NEW FILE
STORE
SELECT DRIVE

IV:STORE SCREENElll :DRIVE A
IV:
V:

VI:

TYPE FILENAME
DRIVE A

§1v
v\sTORE SCREEN

FOR A NEW FILE
STORE TYPE FILENAME
SELECT DRIVE DRIVE A

V:STORE WK-SPACE~lll:DRIVE A-----111:
IV: ~ -IV:
v : L v·

VI: Vl ;STORE WK-SPACE

GET
SELECT DRIVE

Vl:GET------c-111:DRIVE A
V:

VI:

SELECT A FILE FROM
DRIVE A
USE ARROW KEYS

~

V·SELECT DRIVE
V:BACKUP FILE DIR

Vl:GET FILE

70 Coleco ADAM User's Handbook

FIGURE 3-11. CLEAR Command Structure
CLEAR SCREEN
ARE YOU SURE?

4
Vl:FINAL CLEAR

STANDARD---- CLEAR ---...--V:CLEAR SCREEN
FORMAT L__Vl:CLEAR WORKSPA CLEAR WORKSPACE

ARE YOU SURE?
Vl:FINAL CLEAR

FIGURE 3-12. INSERT Command Structure

STANDARD MENU
INSERT:TYPE NEXT PRESS V OR VI FOR TYPE SUBSCRIPT

IV:END PAGE SUPER/SUBSCRIPT TEXT
INSERT 1-----4--V:SUPER/SUBSCRIPT cv:SUBSCRIPT Vl:DONE

Vl:DONE Vl:SUPERSCRIPT 7_

~IGURE 3-13. PRINT Command Structure

TYPE SUPER
SCRIPT TEXT

Vl:DONE

..,rANDARD
I MENU

SINGLE SHEET FAN FOLD
PRINT OPTION~ 11:FAN FOLD ----11:SINGLE SHEET

PAINT i------.---111:PRINT HI-LITE 111:FIRST PAGE IS 1 111 :FIAST PAGE IS 1
--IV:PRINT SCREEN IV:AUTO PAGE IV:AUTO PAGE #
.___ V:PRINT WK-SPACE V:PAINT/ STOP PAINT V:PRINT/ STOP PRINT

VI: VI :

FIGURE 3-14. DELETE Command Structure

'

HI-LITE TO DELETE
STANDARD' 1------11 DELETE 1-j ---~-IV:HI-LITE

_ FORMAT _ Lv:HI-LITE ERASE
Lv1:FINAL DELETE

4
Introduction to SmartBASIC

Introduction

In this chapter, we will provide an overview of the background and
history of SmartBASIC as well as the operating details you will need to
know to begin using SmartBASIC. These include start-up, program
entry, statement structure, program editing, program saving, and pro­

gram loading.

BASIC PROGRAMMING LANGUAGE BACKGROUND

BASIC is probably the most widely used programming language for
microcomputers, with the ADAM being no exception.

BASIC was developed at Dartmouth College in the early l 960's by
professors John G. Kemeny and Thomas E. Kurtz. BASIC was designed
as a simple, easy-to-use programming language.

There are many versions of BASIC used with various computers. As
a result, the version of BASIC that is used with the ADAM is not the same
as the version of BASIC used with other computers. However, the
fundamentals of the BASIC language are the same, regardless of the
version.

71

72 Coleco ADAM User's Handbook

PROGRAMMING LANGUAGES

BASIC, is a high level programming language. With a high-level
language, the programmer need not have a knowledge of the machine
language used by the computer's microprocessor. With machine or
assembly language, an in-depth understanding of the computer and
microprocessor is required to write programs.

With a high-level language such as BASIC, commands are generally
specified in English words that can be associated with the operation to be
performed. For example, the BASIC command PRINT instructs the
computer to display information. As a result, it is usually much easier to
program in a high-level language such as SmartBASIC than in a machine
or assembly language.

COMPILED vs. INTERPRETED LANGUAGES

High-level computer languages are often distinguished as being
,,ther compiled or interpreted languages.

A compiled language program consists of the source code and the
compiled code. The source code consists of the program statements in
their original form. For example, the following is a line of source code
from a program written in the CBASIC compiled language:

100 INPUT "ENTER TODAY'S DATE:";DATE.1

The source code is processed by a program known as a compiler into
the compiled code. The compiled code is very similar to the machine
language used by the microprocessor. The compiled code is the code
actually used when a compiled program is run. A program known as a
run-time monitor is used to run the compiled program.

An interpreted language consists of only the source code. The source
code is translated line-by-line directly into machine language instruc­
tions. SmartBASIC is an interpreted language.

One advantage of interpreted languages over compiled languages is
that interpreted language programs are more easily developed. When
working with interpreted languages, a programmer need only write a
program, enter it, run it, and alter it at his own leisure. When working
with a compiled language, the source code must be recompiled every time

Introduction to SmartBASIC 73

it is edited. This can be frustrating during the program debugging process.
One advantage of compiled languages over interpreted languages is

that the execution time is much faster. The compiled code is much closer
to the machine language than the source code. Since interpretation is not
necessary, execution of compiled code is much faster.

GETTING STARTED WITH SMARTBASIC

As we discussed earlier, BASIC is a high-level language which must
be interpreted into the microprocessor's native machine language. This is
accomplished with a program known as an interpreter.

Before a BASIC program can be executed, the Smart BASIC inter­
preter must be loaded into the computer's memory. The Digital Data
Pack that contains the BASIC interpreter is labeled Smart BASIC. Begin
by inserting the Data Pack into the port in the console as shown in Figure
4-1.

:t / 1 11 1 1 . :., .

I I I I I I I I I I I I I I I I I I l Ill l l l Ill II II l \\I\\

.,, ___ ,._

--·------~ -·

I

' ..,.' I

lflllllllflllifl/l!llflff __ _

FIGURE 4-1. Inserting the Digital Data Pack

Once the Data Pack has been inserted in the drive, the loading
procedure is ready to begin. A switch labeled COMPUTER RESET is
located on top of the main computer console. Slide this switch forward
and release it. The Digital Data Pack Drive will operate for about a
minute before the programming language will be ready to use.

7 4 Coleco ADAM User's Handbook

The following message will appear at the top of the display when the
loading procedure has been completed.

Coleco SmartBASIC V1 .0

At the bottom of the display, two special characters appear. The first
character(]) is called the prompt. This character will be displayed when­
ever the computer is ready to accept a command or statement.

The second character is a blinking underline (_). This character is
known as the cursor. The cursor indicates the position on the display
where the next character entered via the keyboard will appear.

IMMEDIATE AND PROGRAM MODES

The immediate mode is also known as the direct or calculator mode.
In the immediate mode, most BASIC command entries result in the
instructions being executed without delay. For example, if the following
immediate mode line was entered, and the RETURN key pressed.

]PRINT" JIM SMITH"

the following would be displayed on the video screen:

JIM SMITH

In the program or indirect mode, the computer accepts program
lines into memory, where they are stored for later execution. This stored
program will be executed when the appropriate command (generally
RUN) is entered.

]10 PRINT" JIM SMITH"
)20 PRINT "1220 EUCLID AVE"
]30 PRINT "CLEVELAND, OH 44122"
]40 END
]RUN
JIM SMITH
1220 EUCLID AVE
CLEVELAND, OH 44122

FIGURE 4-2. Program Mode Entry & Execution

Introduction to SmartBASIC 75

Figure 4-2 contains an example of the entry of a program in the
program mode and its execution.

Notice that in the program mode, that each BASIC prgram line
must be preceded with a line number. Line numbers will be dis­
cussed in more detail later in this chapter.

COMMAND AND STATEMENT STRUCTURE

In SmartBASIC, instructions being relayed to the interpreter are
known as commands in the immediate mode, and statements in the
program mode. In practice, the difference between a command and a
statement is primarily one of semantics, as both generally use the same
structure and keywords.

Both commands and statements begin with a BASIC keyword or
reserved word. The keyword identifies the operation to be undertaken by
the BASIC interpreter. For example, in the preceding section, the PRINT
command was used to instruct the ADAM to display information on the
screen.

In SmartBASIC, keywords may be entered in either uppercase or
lowercase letters. In the examples in this book, we will display keywords
as uppercase letters.

A BASIC command or statement generally includes one or more
arguments or parameters following the keyword. In our example,

PRINT " JIM SMITH"

"JIM SMITH" is the PRINT statement parameter.

ENTERING A PROGRAM

In the preceding section, we touched upon the fundamentals of
entering and running a BASIC program on the ADAM. In this section,
we will expand upon that discussion using the example in Figure 4-3.

BASIC programs are entered as program lines. Any text preceded
with a number (line number) and ended by pressing the RETURN key
will be regarded as a program line.

The maximum number of characters that may be included in any one
line is 128 including RETURN. lf a line contains more than 128 charac­
ters, an error condition will result.

76 Coleco ADAM User's Handbook

]NEW

]100 PRINT 5

]200 END

]RUN
5

]150 PRINT -5

]AUN
5
-5

]NEW

]100 PRINT 50

)200 END

)RUN
50

FIGURE 4-3. Entering and Running a Program

Note that in the first 5 lines of Figure 4-3, a program was entered in
the command mode and run in the execute mode. After the answer, 5, had
been displayed, the prompt appeared.

At this point, the original program is stored in memory, and can be
run again if desired. Also, the program being held in memory can be
added to or changed. That is what was done in line number 150 of Figure
4-3. An additional statement was inserted between statements I 00 and
200 in the program being stored in memory. This revised program can be
executed by again entering RUN.

The computer memory can only hold one program at a time. The
NEW command is used to erase the program in memory so as to allow a
new program to be entered. Note the use of NEW in Figure 4-3.

Introduction to SmartBASIC 77

Note in our examples the following features common to the BASIC
programs:

I. Each program line must begin with a line number. The computer
executes program lines in order from lowest line number to highest

line number.
2. The END statement signals the end of a program. When END is

executed, the program run will stop.

It is recommended that consecutive line numbers (i .e. 1,2,3,4,5, etc.)
not be used in a program. By using numbers which are a fixed multiple
(i.e . 100, 200, 300, etc.), additional line numbers can be inserted between
exisiting lines without renumbering the lines.

Line numbers need not be in any particular order. For example , the
user could enter lines I 00 and 200 and then enter line 150. The computer
will automatically rearra nge the lines according to their line numbers.

If the user ente rs two lines with the same line number, the computer
will erase the first line and replace it with the second. This feature allows
the user to replace an entire line by merely entering a new line with the

same number.
A new line ca n be added to a BASIC program by merely entering a

line numbe~ followed by the desired text and RETURN. When RETURN
is pressed, the line will be saved as part of the BASIC program.

To dele te a line in an existing program, merely enter the line number
of the line to be d e le ted followed by RETURN . A group of lines can be
deleted via the DEL command, and an entire program can be deleted with
the NEW command . These will be discussed in detail in Chapter 12.

ERROR AND WARNING MESSAGES

When a statement with an incorrect for mat has been entered, an
error message will be displayed. The error message describes the type of

problem that occured.
If a problem develops while a program is being executed , an error

message will also be displayed . An error that occurs during the execution
of a program generates an error message that includes a description of the

problem a s well as the line number of the statement that caused the

problem.

78 Coleco ADAM User's Handbook

When an error occurs in a program, an error message will be dis­
played and its execution will stop. If a problem occurs in a program that is
not serious enough to stop its execution, a warning message will be
displayed. Warning messages describe the nature of the problem as well as
the line number where the problem occurred.

LISTING A PROGRAM

LIST is used to display the program stored in memory on the screen
or printer. This display is often referred to as a program listing. An
example of the use of LIST is given in Figure 4-4.

When the LIST command is executed, the program in the compu­
ter's memory will be displayed on the screen. Each program line will be
displayed in increasing order of line numbers, regardless of the order of
in which the program's lines were entered.

If a program occupies more than 24 display lines, the first lines of the
program will be moved off the top of the display in order to accommodate
the last lines. This process is called scrolling.

When a lenghty program is listed on the display, the information will
only be displayed briefly. As a result, it is often necessary to halt the listing
of a program. If this is the case, simply hold down the CONTROL Key
and type the letter S. To continue the listing, simply repeat the
CONTROL-S combination.

LIST can be used with optional parameters to display only a portion
of the program. For example, LIST can be used with a single line number
parameter to list only that line. This is shown in Figure 4-4.

Introduction to SmartBASIC 79

)10 PRINT "This is"
]20 PRINT "an example"
]30 PRINT "program"
]LIST

10 PRINT "This is"
20 PRINT "an example"
30 PRINT "program"

]LIST 10
10 PRINT "This is"

]LIST -20
10 PRINT "This is"
20 PRINT "an example"

]LIST 20-
20 PRINT "an example"
30 PRINT "program"

FIGURE 4-4. Listing a Program

LIST can also be used with a range of line numbers. For example, the
command LIST 10-30 would list all line numbers with values in the range

10 to 30.
LIST can be used to display all line numbers from the beginning of

the program to a specified line by prefixing that line number with a
hyphen and using it as the LIST parameter. For example, the following
command:

LIST -150

would cause all program lines to be listed up to and including line 150.
If the line number parameter is foil owed by a hyphen. all program

lines after and including the specified line will be listed. This is demon­
strated in the final example in Figure 4-4.

EDITING A PROGRAM

If a program line is entered incorrectly it can be changed in one of
two ways. The first method is to simply re-enter the program line. This is

80 Coleco ADAM User's Handbook

accomplished by retyping the line number, fallowed by one or more
appropriate statements.

The second method uses the ADA M's full-screen edit feature to alter
a program line. This feature allows the cursor to be moved to any location
on the screen. Once the cursor has been located to an incorrect statement,
the correct character or characters can be typed in place of the error.

The cursor can be moved by the 5 keys on the lower right portion of
the keyboard. These keys are labeled f, 1, -, -and HOME. The "arrow"
keys move the cursor in the direction of the arrow. The HOME key moves
the cursor to the upper left corner of the display. The use of the full-screen
editor is best explained by a simple example.

Begin by entering the fallowing program:

) 10 FOR T = 1 TO 100
)20 PRINTT
)30 NEXT T

When the LIST command is issued, the program will appear on the
display as follows:

]LIST

10 FOR t = 1 TO 100
20 PRINT t
30 NEXT t

1-

Suppose line number 10 is incorrect, and was intended to appear as
follows:

10 FOR t =1 TO 200

This correction can be made by using the f key to move the cursor to
the first line of the program listing. Proceed by using the - key to move
the cursor I 8 spaces to the right. The cursor should now be directly under
the I in the value 100, as follows.

10 FOR t = 1 TO 100

Introduction to SmartBASIC 81

Correct the error by typing the number 2 in the place of the 1.
Continue by using the - key to move the cursor past the end of the
program line, as fallows .

10 FOR t = 1 TO 200 _

When a RETURN key is pressed , the corrected line will be added to
the program in place of the incorrect statement. The RETURN key
causes the cursor to move down 2 lines. When this occurs, the program
line immediately after the line being edited will oe cleared from the
display. The screen will now appear as fallows .

]LIST
10 FOR t = 1 TO 200

]_30 NEXT t

Even though line 20 no longer appears on the screen, it still exists in

the program.

RUNNING A PROGRAM

Once a program is present in memory, the operator can run it. As
mentioned previously, a program can be entered into memory via the
keyboard or it can be loaded into memory from a Digital Data Pack. The
procedure for loading program will be discussed later in this chapter.

The RUN command is used to begin program execution. RUN can
be used with or without an optional line number or file specification as its
parameter. Because RUN is generally executed without an optional
parameter, we will limit our discussion to RUN in this section to its
execution without parameters. The usage of RUN with parameters is

discussed in Chapter 12.
When the RUN command has been entered and the Enter key

pressed, program statements entered in the indirect mode (with line
numbers) will be executed in order, beginning with the lowest line. An
example of the usage of RUN is shown in Figure 4-4.

82 Coleco ADAM User's Handbook

)100 PRINT "THIS IS LINE 1"
)200 PRINT "LINE 2 IS BEING EXECUTED"
)300 PRINT "LINE 3 IS BEING EXECUTED"
)400 PRINT "LINE 4 IS THE FINAL LINE"
]500 END
]RUN
THIS IS LINE 1
LINE 2 IS BEING EXECUTED
LINE 3 IS BEING EXECUTED
LINE 4 IS THE FINAL LINE

FIGURE 4-5. RUN Command

The execution of a program can be stopped at any time by holding
down the CONTROL key and typing the letter C.

SAVING A PROGRAM

As you may recall from our discussion of program entry, only one
BASIC program can be stored in memory at any one time. When the
ADA M's power is turned off, its memory contents will be erased. Any
program stored there will be lost unless it is first stored on a permament
medium such as a Digital Data Pack.

Before a program can be saved, it must first be assigned a name
consisting of one to ten characters. This name is known as a filename.
Once a program has been assigned a filename, it can be saved with the
SAVE command.

For example, the program in memory can be saved on the Digital
Data Pack with the following command:

SAVE PROGRAM

When SAVE is executed, the program remains in memory where it
can be added to, edited, or run if desired .

The Digital Data Pack is an effective means of retaining programs
and data while the computer is turned off. The details of the procedures
used to manipulate programs and data will be presented in Chapter 10.

Introduction to SmartBASIC 83

LOADING A PROGRAM

Once a program has been saved on a Digital Data Pack, it can again
be loaded back into memory using the LOAD command. An example of
a LOAD command is given below:

LOAD PROGRAM

Before a program is loaded, any existing program in memory will be
erased. Once the program has been loaded into memory, it can be edited
or run as any other program would be.

If the file specified with LOAD is not present on the indicated
diskette, the following error message will be displayed:

File not found

MULTIPLE STATEMENTS

In our examples thus far, we have only included one BASIC
statement in each program line. In SmartBASIC, multiple statements
may be included in a single program line as long as each of the statements
are separated with a colon.

The following program uses multiple statements in line 10.

]10 PRINT "JOHN":PRINT "NELSON"
]20 PRINT "ATLANTA"
]30 PRINT "GEORGIA"
]40 END
]RUN
JOHN
NELSON
ATLANTA
GEORGIA

5
Data Types, Variables, & Operators

Introduction

In Chapter 4 we gained an overview of SmartBASIC and learned a
few of Smart BAS I C's fundamental operating details. In Chapter 5, we
will begin learning the basic concepts necessary to master SmartBASIC.

In this chapter, we will discuss the various types of data used in Smart­
BASIC as well as the various operations that can be performed on that
data.

Data Types

The data processed in SmartBASIC can be classified under two
special headings: string and numeric. String and numeric data are stored
differently in memory by the ADAM . Also, the various operators in
SmartBASIC affect string and numeric data in different manners.

STRINGS

A string can be defined as one or more ASCII characters. The
various ASCII characters are listed in Appendix 3 and consist · of the

85

86 Coleco ADAM User's Handbook

digits (0-9), letters of the alphabet, and a number of special symbols.
SmartBASIC also allows a st r ing of zero characters. This is also

known as the empty or null string and is used much as a zero is in

mathematics.
As you may already have noted from our examples in Chapter 4,

when a string is used in a Smart BASIC stateme nt, it must be enclosed
within quotation marks. The quotation marks serve to identify the begin­
ning and ending points of the string. They are not a part of the string.

A string enclosed within quotation marks is known as a string
constant. A constant is an actual value used by BASIC during execution.
The following are examples of string constants.

"JOHN SMITH"
"12197"
"E97432"
"BOSTON, MA 01270"
"213-729-4234"

Notice that numbers can be used within a string constant. Remem­
ber, however, that the numbers within a string consta nt a re string rather

than numeric data .
One final point that should be kept in mind regarding string con­

stants is that they cannot contain quotation marks. For example, the
foil owing string constant:

"John said, "Goodbye." as he walked away."

would be illegal. Since quotation marks are used to denote the beginning
and ending points of a string constant, their inclusion within the string

itself would cause difficulties and therefore is not allowed.
In Chapter 9 we will discuss how the CH R$ function can be used to

place the ASCll code for quotation marks within a string constant.

NUMERIC DATA

Numeric data can be defined as information denoted with numbers.
Numeric data is stored and operated on in a different manner than is

string data.

Data Types, Variables, & Operators 87

Numeric constants consist of positive and negative numbers.
Numeric constants cannot include commas. For example, 10,000 would
be an illegal numeric constant.

SmartBASIC further classifies numeric constants as integers, fixed­
point numbers and floating-point numbers.

Integers can be defined as the whole numbers in the range between
-32767 and 32767 inclusive. Integer numbers do not have a decimal
portion. Fixed-point numbers can be defined as the set of positive and
negative real numbers. Fixed-point numbers contain a decimal portion.
Floating-point numbers are represented in scientific notation. A number
in scientific notation takes the following format:

+XE+ yy

Where;

+ is an optional plus or minus sign.

x can either be an integer or fixed point number. This position of
the number is known as the coefficient or mantissa.

E stands for exponent.

yy is a two digit exponent. The exponent gives the number of places
that the decimal point must be moved to give its true location.
The decimal point is moved to the right with positive exponents.

The decimal point is moved to the left with negative exponents.

The following a re examples of floating-point numbers and their

equivalent notation in fixed-point.

Floating-Point
3.87E+05
4.064E-04
-1E+06
7 .87642E+03

Fixed-Point
387000
.0004064
-1000000
7876.42

Smart BASIC can only handle floating point numbers in the range
between l.70141l83E+38and-l.70141183E+38. Any decimal numbers in

88 Coleco ADAM User's Handbook

the range between -2.93873587£-39 and 2.93873587£-39 will be con­

verted to zero.
Floating-point notation is used as a more efficient means for the

computer to manipulate exceedingly large or exceedingly small values.
As a result, some values that are entered in fixed-point notation may
automatically be converted to floating-point notation by the computer.

Numbers represented in floating-point or fixed-point notation con­

tain a maximum of9 digits of accuracy. Any additional digits in a number

will be truncated.
Integers differ from floating-point and fixed-point values in the fact

that integers cannot contain digits to the right of the decimal point. This

condition allows integers to be stored in a smaller area of the computer's

memory. Also, integers can be handled more quickly than other ty pes of

values.
The following are examples of integers, floating-point and fi xed­

point numeric values.

Integers
-7978
32600
37
192
-687

Floating-Point
-387E+04
4.015E+07
6.870E-27
1 E+06
1.414E+00

Fixed-Point
47988
37.0
45.874
3.1415927
-238.5

Note that 47988 cannot be considered an integer since it lies outside
the allowable range of values (-32767 to 32767). Also , note tha t 37.0 is not

an integer because it contains a digit to the right of the decimal point.

Variables - An Overview

In the preceeding section, we discussed SmartBASIC's diffe re nt

types of data - string and numeric. In the remaind er of this book, we will

refer to a string constant as a string and a numeric constant as a number.

So far, we have only discussed representing data as a constant. The

value of a string or numeric constant such as" JIM HI LL" or 27. 92 al ways

remains the same.

Data can also be represented by using a variable. A variable can be

defined as an area of memory that is represented with a name. That name

is known as the variable name. The information stored in the memory

Data lypes, Variables, & Operators 89

area defined by a variable name can vary (hence the name variable) as
SmartBASlC commands or statements are executed. The data currently
stored in the memory area defined by a variable is known as the variable's
value.

VARIABLE NAMES

Smart BASIC allows variable names of up to 25 characters in length.
A variable name must begin with a letter of the alphabet (A-Z) fallowed
by additional letters or digits. Blank spaces are not allowed within a
variable name. Letters entered in uppercase are automatically converted
to lowercase by the computer. The fallowing are examples of valid
SmartBASIC variable names

abc
name

x9
address

Although 25 characters can be used in a variable name, the computer
can only recognize the first two characters. As a result, the computer will
not be able to differentiate between two variables such as AB I and AB2.

A variable name may not duplicate a SmartBASIC reserved word
(see Appendix l). However, a variable name may incorporate a reserved
word as part of its name.* Therefore, although the following would be
invalid variable names:

NEW AND PRINT

the following variable names would be valid:

NEWPHONE ANDY PRINTNAME

Variables, like constants, can either be numeric or string. Nu1&.
variables can be integer or decimal values.

A variable type can be declared by using a type identification charac­
ter. The type identification characters are as follows:

% = integer

$=string

For example, the following variable names,

ANCIENT$ JACK%

*The exception to this rule is FN. A variable name may not begin with FN.

90 Coleco ADAM User's Handbook

would be declared as string, and integer respectively. If a variable type
character is not specified, the variable is assumed to be a decimal value.

INITIAL VARIABLE VALUES

Numeric variables are initially assumed to have a value of zero.
String variables are initially assumed to be null. Values may be assigned
to a variable as the result of a calculation or as the result of an assignment
statement (discussed later).

SmartBASIC does not allow a string value to· be assigned to a
numeric variable or vice versa. However, a decimal value can be assigned
to an integer value. In this case, the decimal portion of the value will be
neglected and only the integer part will be assigned to the integer variable,
as shown in the following example.

)10 X = 3.1415927
]20 X% = X
)30 PRINT X%
]40 END
)RUN
3

In a similar manner, integers can be assigned to decimal variables.
The following example demonstrates the result.

]10 X% = 5280
]20 X = X%
)30 PRINT X
)40 END
]RUN
5280

ASSIGNMENT STATEMENTS (LET)

The LET statement is used to assign a value to a variable . LET
statements are also known as assignment statements. LET is used with the
foil owing configuration:

LET variable = expression•

•in our configuration examples, BASIC reserved words will be depicted in upper­
case, regular-face type. Parameters to be entered by the programmer will be
depicted in lower-case italics.

Data lfpes, Vartables, & Operators 91

Whenever a LET statement is used in a program, the value of the
variable on the left side of the equation is replaced with the value appear­
ing on the right.

The reserved word, LET need not actually be included in a LET
statement. Both of the following statements have the same meaning:

100 LET A= 5
200 A= 5

The value assigned to a variable can either be a constant, a variable,
or the result of an operation. In the following example, A$ is assigned the
string constant "JOHN", B is assigned the numeric constant 27 .9, C is
assigned the value of B, and D is assigned the value of B multiplied by 2.

)10 A$= "JOHN"
)20 8 = 27.9
]30 C = 8
]40 D = 8 • 2
)50 PRINT A$
)60 PAINT 8
]70 PRINT C
)80 PRINT D
]RUN
JOHN
27.9
27.9
55.8

CLEAR Statement

A CLEAR statement has the opposite effect of an assignment state­
ment. CLEAR statements cause the values of all numeric variables to be
set to zero, and all string variables to be set to null (no characters).

92 Coleco ADAM User's Handbook

Expressions & Operators

The values of variables and constants are combined to form a new
value through the use of expressions. The following are examples of
expressions.

4+7
A$+ 8$
3 • 1
14 <21
XANDY

SmartBASIC incJudes several types of expressions including arith­
metic, relational, and Boolean. In our previous examples, the first three
examples were arithmetic expressions, while the fourth and fifth were
examples of relational and Boolean expressions respectively. Each of
these types of expressions will be discussed in detail in the following
sections.

The sign or word describing the operation to be undertaken is known
as the operator. An operator is a symbol or word which represents an
action which is to be undertaken on one or more values specified with the
operator. These values are known as operands.

The operators in our previous examples were as follows:

+

+

<
AND

ARITHMETIC OPERATORS

Arithmetic operators are used to perform mathematical operations
on numeric or string variables. The arithmetic operators are listed in
Table 5-1.

Data fypes, Variables, & Operators 93

Table 5-1 Order of Evaluation

Symbol Operation Example

- Negation -A

" Exponentiation AAB . Multiplication A"B
I Division A/8
+ Addition A+B
- Subtraction A-8

The first arithmetic operation specified in Table 5-1 is exponentia­
tion . Exponentiation is the process of raising a number to a specified
power. For example, in the following,

AS

the expression would be evaluated as:

A 0 A 0 A 0 A 0 A

In SmartBASIC, exponentiation is indicated with the caret symbv1,
Expone ntiation can be used in an arithmetic expression as shown

below:

7A2

The preceding expression would evaluate to 49.

The second operation indicated in Table 5-1 is negation. When the
-sign precedes a number, the symbol is used to change that number's sign.
This usage is known as negation.

The symbols+ and - are used for addition and subtraction respec­
tively. The asterisk(*) is used to indicate multiplication, while the slash

(/) is used to indicate division.

ORDER OF EVALUATION (ARITHMETIC EXPRESSIONS)

All of our preceding examples were simple expressions. A simple

expression is one which contains just one operator and one or two

operands. Simple expressions can be combined to form compound
expressions. The following are examples of compound expressions:

94 Coleco ADAM User's Handbook

(A+ 8) • 7 - 4
(A + 8) • A • (C + D)

27 + 47 11. A - 8

With compound expressions, it 1s necessary that the computer
knows which opera lions should be undertaken first. Smart BASIC
follows a standard order of evaluation within compound expressions.

In this section, we will discuss the order of evaluation of compound
arithmetic expressions. Later in this chapter, we will discuss the order of
evaluation of relational and logical operators as well as the overall order
of evaluation of arithmetic, relational, and logical operators as a group.

In an expression with more than one arithmetic operator, the opera­
tors with higher priority are evaluated first followed by those with lower
priority. Evaluation is accomplished from left to right in the expression.
The following is an example of the evaluation of the arithmetic operators
. .
man express10n.

A = 37.1 + 12.9 • 2.1 + 7 - 4 11. 2
= 37.1 + 12.9 • 2.1 + 7 - 16
= 37.1 +27.09+7-16
= 55.19

Parentheses can be used to alter the order of eva luation in arithmetic
expressions. Expressions appearing within parentheses have the highest
priority in the order of evaluation. For example, the use of parentheses
with our preceding example could change the value of the expression.

A = (37 .1 + 12.9) • 2.1 + (7 - 4) /\ 2
= 50.0 • 2.1 + 3 /\ 2
= 50.0 • 2.1 + 9
= 105.0 + 9
= 114.0

MIXING VARIABLE TYPES IN ARITHMETIC EXPRESSIONS

Although certain variable types may be mixed in a SmartBASIC

expression, it is preferable to use a single variable type throughout each
expression. By doing so, execution time will be decreased, memory

requirements will be reduced, and the probability for program errors will
be reduced.

Data fypes, Variables, & Operators 95

An example of mixing different numeric type in the same expression
is given below:

A= B + 1

Both A and Bare numeric variables, while I is an integer constant.
The integer constant must be converted to a real number (as shown
below), before the expression can be evaluated.

A= B + 1.0

When numeric variables are used in expressions, the variable on the
left side of the equa l sign is assigned the value of the expression on the
right side . The value will be converted to the value specified by the
numeric varia ble on the left side. For instance, in the following,

A%= 1.03 + 2.07

the value of the expression on the right hand side (3 . l) will be converted to
the integer 3 so that it agrees with the integer variable A%. If A% were

replaced with A, no conversion would have been necessary.

RELATIONAL OPERATORS

Relational operators are used to make a comparison using two
operands. The following relational operators are used in Smart BASIC.

< --► less than
< =--► less than or equal to

> --► greater than
> = --► great than or equal to

= --► equal to
< > --- not equal

A relational operation evaluates to either true or false. For exami,,ll,
if the constant 1.0 was compared to the constant 2.0 to see whether they

were equal, the expression would evaluate to false. In SmartBASIC, a
value of I represents a condition of true, while a value of 0 represents

false .
The only values returned by a comparison in SmartBASIC are l

(true) or 0 (false). These values can be used as any other integer would be

96 Coleco ADAM User's Handbook

used. The following results are generated by the following relational

o:xpressions:

5 > 7 ---~ O (false)

5 > 3 1 (true)

7 = 7 1 (true)

Relational operations are evaluated after the addition and subtrac­
tion arithmetic operations. Relational operators are always performed
from left to right in an expression.

Although different numeric data types may be compared in a rela­
tional expression, numeric data may not be compared to string data .

Relational operations using numeric operations are fairly straight­
[orward . However, relational operations using string values may prove
confusing to the first-time user. Strings are compared by taking the
ASCIJ value for each character in the string one at a time and comparing

the codes.
For example, consider the two string values "JOSEPH " and

"JOAN". In a relational expression, the first characters of the strings will
be compared first. Since both strings begin with "JO", the comparison
will continue with the third character.

Since the ASCII code for" A" (65) is less than the AS Cl 1 code for "S"
(83), "JOAN" is considered less than "JOSEPH".

Jf the end of a string is encountered during a string comparison, the
string with the fewer number of characters will be considered less than the
longer string. For example, "ABC" would be considered less than
"ABCD". The relational operators can be used in this manner to indicate
the relative location of strings in alphabetical order.

The following examples demonstrate the use of relational operators
with string values. All of the following expressions are true.

"ABC" = "ABC"
"ABC" > "AAA"
"ALFRED" < "ALFREDO"
A$ < 2$ where A$ = "ALFRED" and 2$ = "ALFREDO"

Note that all string constants must be enclosed in quotation marks.

Data ~pes, Variables, & Operators 97

LOGICAL OPERATORS

Logical or Boolean operators are generally used in SmartBASIC to
compare the outcomes of two relational operations. Logical operations
themselves return a true or false value which will be used to determine
program flow.

The logical operators are NOT (logical complement), AND (con­
junction), and OR (disjunction). These return results as shown in Figure

5-1.
A logical operator evaluates an input of one or more operands with

true or false values. The logical operator evaluates these true or false
values and returns a value of true or false itself. An operand of a logical
operator is evaluated as true if it has a non-zero value (Remember,
relational opera tors return a value of 1 for a true value.). An operand of a
logical operator is evaluated as false if it is equal to zero.

The result of a logical operation is also a number which, if non-zero
is considered true, and false if it is zero.

The following are examples of the use of logical operators in combi­
nation with relational operators in decision-making:

IF X > 10 ORY <OTHEN 900
IF A> 0 AND B > 0 THEN 200
FLAG% = NOT FLAG%

In the first example, the result of the logical operation will be L.

variable X has a value less than 0. Otherwise, it will be false . If the result of
the logical operation is true, the program will branch to line 900. Other­
wise, it will continue to the next statement.

In the second example, the result of the logical operation will be true
only if the values of both variables A and Bare greater than zero. If the
result of the logical operation is true, program control will branch to line

200.
In the final example, the value of FLAG% is switched from true to

false or vice versa .
Figure 5- 1 contains tables that may prove helpful when evaluating

program statements using logical operators in combination with rela­

tional operators.

98 Coleco ADAM Use(s Handbook

NOT Operation

I T F A Operand

I F T NOTA

OR Operation

[T T - I F F A Operand

(T F I
T F

I
B Operand

l T T I
T F I

AOR B

AND Operation

T T F F A Operand

I T I F I T F
I

B Operand

I T
I

F I F F
I

AAND B

FIGURE 5-1. Logical Operators

The NOT, AND, and OR operators are best explained with simple
analogy. Suppose that Steve and Sherry were shopping in the produce
department of their grocery store. If they decided to collectively purchase
an item if either of them individually wanted that item, they would be
acting under the OR logical operator.

Now, suppose that Steve and Sherry decided that they would only
purchase an item if they both wanted that item. They would then be acting

under the AND logical operation.
Now, suppose that Sherry was angry with Steve. If Sherry decided

not to purchase the items that Steve wanted , but purchased everything he
didn't want instead, she would be acting under the NOT logical operation.

Data Types, Variables, & Operators 99

ORDER OF EVALUATION - OVERVIEW

Earlier in this chapter, we outlined the order of evaluation within an
expression with respect to arithmetic operators. Now that we have intro­
duced the concepts of relational and logical operations, we can revise our
order of evaluation to that of Table 5-2.

Table 5-2. Order of Evaluation

Operator Description Priority

Parentheses ()
Used to alter order of

1
evaluation.

- Unary Minus
Unary Operators NOT Logical Complement

2

I\ Exponentiation 3

. Multiplication
Arithmetic I Division

4

Operators
+ Addition

Subtraction
5

-

= Equal To
<> Not Equal To

Relational < Less Than 6
Opertors > Greater Than

< = Less Than or Equal To
> = Greater Than or Equal To

Logical AND Conjuction 7

Operators OR Disjunction 8

The unary operators will always be performed before any other
opera tors. Exponentiation will be performed next, fallowed by multipli­
cation and division. Addition and subtraction will always be the last

arithmetic operations to be performed . Relational operations will be

performed after the arithmetic operations, but before AND and OR.
In the absence of parentheses, operators with the same priority will

be performed from left to right in an expression.

6
Inputting and Outputting Data

Introduction

In Chapters 4 and 5, we briefly described the usage of the PRINT
statement to output data. In this chapter, we will discuss the usage of
PRINT for outputting data to the screen or printer in depth.

After we have discussed the methods used in SmartBASIC to output
data, we will discuss the statements used to input data into variables.
These include INPUT and GET.

PRINT

To this point, we have only used the PRINT statement to output a
single constant or variable value to the screen. The PRINT statement can
also be used to output more than one item to the screen. When PRINT is
used in this manner, the spacing between the items to be printed can be
controlled by separating them with a comma or semicolon. For example,
compare the results of the fallowing PRINT statements.

101

1 02 Coleco ADAM User's Handbook

]PRINT "BILL" " STEVE" " LARRY"
BILLSTEVELARRY

]PRINT "BILL","STEVE"
BILL STEVE

] PRINT "BILL" ;"STEVE";"LARRY"
BILLSTEVELARRY

Notice that in our first example, no delimiter was used to separate
the three string constants. These were output as one continuous string.

In the second example, the comma was used to delimit the string
constants. When a comma appears in a PRINT statement, the computer
is instructed to begin printing the next parameter in the PRINT statement
at the beginning of the next print zone. Smart BASIC divides the spacing
on a line into two print zones. The first print zone extends from the
left-most edge of the display to the middle of the screen. The second print
zone extends from the center of the line to the right hand edge of the

screen.
Commas are very useful when data is to be output in tabula r form.

This is illustrated in the following example program.

]10 PRINT "Name","ID No."
]20 PRINT" Jack Williams" ,3749
]30 PRINT" Ann Timmons" ,3622
)40 PRINT "Jay Randolph",2511
}50 END
]RUN
Name
Jack Williams
Ann Timmons
Jay Randolph

ID No.
3749
3622
2511

In the third example at the top of this page, the semicolon was used
as the delimiter. The semicolon causes each string data item in the PRINT
statement to be output immediately adjacent to the preceding item.

When semicolons are used to separate data items in a PRINT
statement, the output will be displayed without the insertion of any
additional spaces between data items. As a result , spaces must be inserted
in PRINT statements between any data items that need to be separated .
The most common technique used to insert spaces is to include a space

Inputting and Outputting Data 1 03

(enclosed in quotation ma rks) in a PRINT statement. The following
example program demonstrates this technique.

]10 A$= " COLECO"
]20 8$ = "ADAM"
]30 PRINT A$;8$
]40 PRINT A$;" " ;8$
]50 END
]RUN
COLECOADAM
COLECO ADAM

Another technique is also commonly used to insert spaces in data
being output. If a space is assigned to a string variable, a space will be
output each time the variable is included in a PRINT statement.

The following example program demonstrates this concept.

] 10 A$ = " "
]20 A= 5
]30 8 = 8
]40 PRINT A;A$;8 ;A$;N8
)50 END
]RUN
5 8 .625

Notice that the variable A$ is assigned a single blank character. A
space is inserted in the output whenever A$ appears in a PRINT

statement.
Note also that when an arithmetic expression is specified in a PRINT

statement, that expression's result will be output.
Generally, when a PRINT statement has been executed , the cursor

or print head will advance to the leftmost position on the next output line.
This is known as a carriage return / line feed, which can be abbreviated as

CR/ LF.
A CR/ LF can be suppressed by ending a PRINT statement with

either a comma or a semicolon. When a semicolon is used to end a PRINT
statement, the output from the next PRINT statement will be positioned
immediately after the data output by its predecessor. This is illustrated in
the following example.

1 04 Coleco ADAM User's Handbook

)10 PRINT "Data1";
)20 PRINT "Data2";
)30 PRINT "Data3";
)40 END
]RUN
Data1 Data2Data3

When a PRINT statement ends with a comma, subsequent data will
be output at the next print zone on the same display line. This is shown in
the foil owing example.

)10 PRINT "Data1",
)20 PRINT "Data2",
)30 END
]RUN
Data1 Data2

There are several features that can be used in the outputting of data .
The first of these features is the inverse mode. When an INVERSE
statement is executed, the subsequent output appears as dark characters
against a light background . The inverse mode will be in effect until a
NORMAL statement is executed. The following example program dem­
onstrates the inverse mode of output.

)10 A$= "OUTPUT"
)20 PRINT A$
)30 INVERSE
)40 PRINT A$
]50 NORMAL
)60 PRINT A$
)70 END

Horizontal Formatting

SmartBASIC includes several functions that allow the programmer
to control the horizontal format of output. These include TAB and SPC.

Inputting and Outputting Data 105

TAB

BASIC allows an item to be printed in any position on the screen or
printer with the TAB command. The print position can range from l to
255.

] 10 PRINT TAB(10}"10";TAB(200}"200"
]RUN

10

200

Notice that the example ca used output to be positioned at columns
10, and 14. Earlier, we mentioned that print positions can range from I
to 255. These 255 print positions are the result of the fact that a logical
line in BASIC can consist of up to 255 characters. If the argument of a
TAB function exceeds the length of the display line, the output will occur
on a subsequent line . This explains why the output of the preceding
example program requires eight lines of the display.

SPC

SPC causes the number of spaces specified as its argument to be sent
to the display or printer.

]10 PRINT "JOHN" SPC(10} "FLETCHER"
]RUN
JOHN FLETCHER

In our preceding example, SPC(10) causes the cursor to move 10
positions to the right once JOHN has been output.

VERTICAL AND HORIZONTAL TABS

The output of a program can be tabulated by either rows or columns
on the display. This can be accomplished with appropriate VTAB and ,
HTAB statements. An HTAB statement causes the cursor to move to a
specified column on the display. Similarly, a VTAB statement causes the

1 06 Coleco ADAM User's Handbook

cursor to proceed to a specified row. The specified row or column number
must be included immediately after the VTAB or HTAB keyword. The
following example program uses the tabulation features to output data in
the four corners of the display.

]10 HOME
)20 PRINT "upper left";
)30 HTAB 21
]40 PRINT "upper right"
)50 VTAB 20
)60 PRINT "bottom left";
]70 HTAB 20
)80 PRINT "bottom right"
]90 END

The HOME statement at line IO causes the screen to be cleared. As a
result, the first output will occur in the upper left corner of the display.
The HTAB statement at line 30 causes the cursor to move to column 21 in
the first row. The second output will then occur in the upper right of the
display. The VTAB statement at line 50 causes the cursor to proceed to
row number 20 on the display. The final HTAB statement causes the
cursor to move near the lower right corner of the display, where the final
output wilJ occur.

Outputting Data to the Printer

Normally, a PRINT statement causes data to appear on the display.
However, data can be output to the printer if appropriate commands are
used.

The first method that can be used to output data is the use of the
CONTROL key along with the letter P. Whenever the P key is typed while
the CONTROL key is being held down, the data that appears on the
display will be output to the printer. Any characters that appear on the
display will be printed exactly as they appear.

The second method that can be used to output data to the printer is
the PR# I command. When this command is executed in the immediate
mode, or as a program statement, any subsequent PRINT or LIST
statements will cause data to be sent to the printer instead of the display.
Similarly, the PR#O command can be used to deactivate the printer.

Inputting and Outputting Data 107

In order to become acquainted with the use of the printer, execute
the commands described below. Begin by executing the NEW and
HOME commands. Proceed by entering the following program.

]10 PR#1
]20 FORT= 1 TO 10
]30 PRINT T
]40 NEXT T
]50 END

Be sure that the printer is ready for operation and press the P key
while holding down the CONTROL key. The program will immediately
be output to the printer exactly as it appears on the display. Continue by
entering the RUN command.

]RUN

The program will be executed and the output will be sent concur­
rently to the display and the printer. The PR# I command was used in the
program to activate the printer. The command will remain in effect until
the PR#0 command has been issued. Entering the LIST command while
the printer is activated will cause the program listing to be output once
again. The PR#0 command can be used to deactivate the printer at any
time.

Inputting Data

Data can be assigned to a variable while a program is bein!
executed. This can be accomplished with the INPUT or GET statements.

INPUT

When an INPUT statement is executed, the computer will display a
question mark and wait for the operator to enter a response. That entry
will be assigned to the variable indicated. The entry must be ended by
pressing the RETURN key. Program execution will then resume.

The values of several variables can be input with a single INPUT
statement. These variables may either be numeric or string as shown in
the following example:

100 INPUT A$,8$,C

1 08 Coleco ADAM User's Handbook

When the preceding INPUT statement is executed, the INPUT
prompt (?) will be displayed. The operator should then input the data
items for variables A$, B$, and C. Each input should be s~parated by a
comma. The RETURN key should be pressed after all input entries have
been made. An example of a valid entry for the preceding INPUT
statement is given below:

JOHN,SMITH,281

These entries will be assigned to the variables as follows:

A$ = "JOHN"
8$ = "SMITH"
C = 281

If an incorrect number of entries were made or if a string constant
were input for a numeric variable or vice versa, the following message
would be displayed,

? Reenter
?

and the computer would wait for a valid entry.
It is good programming practice to include a prompt message with

the INPUT statement to let the operator know what data the computer is
expecting. For example, the following INPUT statement:

100 INPUT "ENTER COMPANY NAME,NUMBER";A$,B

would result in the following prompt being displayed:

ENTER COMPANY NAME,NUMBER

A typical response would be as follows:

ACME MFG,27

Notice that we did not need to enclose our string entries within
quotation marks. When a string is being entered in response to an IN PUT
prompt, the quotation marks can be excluded unless the entry includes

Inputting and Outputting Data 1 09

commas or begins with one or more blank spaces.

GET STATEMENTS

A GET statement is an alternate means of inputting data from the
keyboard. AG ET statement can be used to accept a single character, and
assign that character to a string variable. When a GET statement is
executed, the execution of the program will pause until a key on the
keyboard has been pressed. Unlike a response to an INPUT statement,
the response to a GET statement does not appear on the display and does
not need to be followed by pressing RETURN. A typical GET statement
would appear as fallows.

GETX$

A GET statement can also be used to assign a digit to a numeric
variable. When a GET statement is used in this fashion, it cannot accept
any character other than the digits O through 9. The following two
example programs demonstrate typical applications of a GET statement.

)10 PRINT "This is Part I"
)20 PRINT "Press any key to continue"
)30 GET DUMMY$
)40 PRINT "This is Part II"
)50 END

)10 PRINT "Make a Selection (0-9)"
)20 GET X
)30 PRINT "Selection ";X;" was chosen"
]40 END

The GET statement in the first example program can accept any
character as a response. The GET statement in the second example
program can accept only a single numeric digit. If a non-numeric charac­
ter is entered in response to the second example statement, the fallowing

error message will be displayed.

? Syntax Error

7
Conditional, Branching, and
Looping Statements

Introduction

Thus far in our discussion of SmartBASIC, our statements have
been executed in sequential order. Several BASIC statements are availa­
ble which can be used to alter program control. These include:

GOTO
GOSUB
ON, GOTO
ON, GOSUB

IF, THEN
ONERR GOTO
FOR, NEXT

These statements will be discussed in the following sections.

CONDITIONAL BRANCHES

One of the most important features of a computer is its ability to
make a decision. BASIC uses the IF, TH EN statement to take advantage
of the computer's decision making ability. The IF, THEN statement takes
the fallowing form:

IF expression THEN statement

111

112 Coleco ADAM User's Handbook

The IF statement sets up a question of a condition. If the answer to
that question is true, the statement following THEN will be executed. If
the answer is false, the subsequent program statement will be executed.

In the following example, if X is equal to I, then Y will be set to I .

100 IF X = 1 THEN Y = 1

The ON statement can also be used with GOTO or GOS U B to set up
a condition which will branch program control. ON, GOTO and ON,
GOSUB will be discussed later in this chapter.

BRANCHING STATEMENTS

Branching statements change the execution pattern of programs
from their usual line by line execution in order of ascending line number.
A branching statement allows program control to be altered to any line
number desired . The most commonly used branching statements in
BASIC are GOTO and GOSUB.

GOTO takes the following format:

GOTO line number

For example, the following program statement,

500 GOTO 999
•
• •

999 END

J branch program control at line 500 to line 999.

SUBROUTINES AND GOSUB

Many times you will find that the same set of program instructions
are used more than once in a program. Re-entering these instructions
throughout the program can be very time consuming. By using subrou­
tines, these additional entries will be unnecessary.

A subroutine can be defined as a program which appears within
another larger program. The subroutine may be executed as many times
as desired.

Conditional, Branching, and Looping Statements 113

The execution of subroutines is controlled by the GOS U B and
RETURN statements. The format for the GOSUB 'statement is as
follows:

GOS U B line number

The computer will begin execution of the subroutine beginning at the
line number indicated . Statements will continue to be executed in order,
until a RETURN statement is encountered. Upon execution of the
RETURN statement, the computer will branch out of the subroutine
back to the first line following the original GOS U B statement. This is
illustrated in the following example.

] 10 GOSUB 100
] 20 GOSUB 200
] 30 END
]100 PRINT "subroutine #1"
]110 RETURN
]200 PRINT "subroutine #2"
]210 RETURN
]RUN
subroutine #1
subroutine #2

Subroutines can help the programmer organize his program more
efficiently. Subroutines also can make writing a program easier. By
dividing a lengthy program into a number of smaller subroutines, the
complexity of the program will be reduced. Individual subroutines are
smaller and, therefore, more easily written. Subroutines are also more
easily debugged than a longer program.

CONDITIONAL STATEMENTS WITH BRANCHING

Branching statements are often used in conjuction with conditional
statements. In such a situation, the normal execution of the program is
altered depending upon the outcome of the condition set up in an IF or an
ON statement. This is shown in the following example.

114 Coleco ADAM User's Handbook

)100 INPUT " Enter the amount."; a
)200 IF a = O THEN GOTO 500
)300 PRINT a
)400 GOTO 100
)500 INPUT" Are you finished?";a$
)600 IF a$ <> "y" THEN 100
)700 END

In our preceding example, if the value input for A has a zero value,
then the program will branch to line 500 where the operator will be asked
whether he has finished entering data . In line 600, the program will set up
a condition where if the input was anything other than the letter "y", the
program will branch to line 100. If the entry was equal toy, the program
will end at line 700.

Note in line 600 that a GOTO statement is not used to precede the line
number being branched to. When a line number is indicated following a
THEN statement, the computer assumes the presence of GOTO.

The ON, GOTO and ON, GOSU 8 statements are also combinations
of a conditional statement and a branching statement. The use of the ON,
GOTO statement is illustrated in the following program.

)10 INPUT A
]20 ON A GOTO 40,50
]30 GOTO 99
]40 PRINT" A= 1 " :GOTO 99
]50 PRINT"A=2"
]99 END

If the variable or expression following ON evalua tes to I, program
control branches to the first line number specified after GOTO; if 2, to the
second, etc.

If the variable or expression evaluates to a number greater than the
number of line numbers following GOTO, program control will branch to
the statement immediately following the ON, GOTO statement. This is
also the case if the variable or expression following ON evaluates to zero.
Negative values for the control expression are not allowed.

The ON, GOSUB statement is very similar in nature to the ON,
GOTO statement. The following statement is an example of an ON ,

GOS U B statement.
100 ON X GOSUB 1000,2000,3000

Conditional, Branching, and Looping Statements 115

If the value of Xis I, the subroutine at line I 000 will be executed. If X
is 2, the subroutine at line 2000 will be executed. If Xis 3, the subroutine
at line 3000 will be executed. If X evaluates to O or to a number greater
than 3, the statement immediately following the ON, GOSUB will be
executed.

If ON,GOSU B causes a branch to a subroutine, program control will
revert to the line immediately following the ON,GOSUB statement, once
the subroutine has been executed.

LOOPING STATEMENTS

Suppose that you needed to compute the square of the integers from
I to 20. One way of doing this is by calculating the square for each
individual integer as shown below.

]100 A= 1 A 2
]200 PRINT A
)300 B = 2 A 2
]400 PRINT B
]500 C = 3/\ 2
]600 PRINT C

This method is very cumbersome. The problem could be solved
much more efficiently through the use of a FOR.NEXT loop as shown
below.

] 100 FOR A = 1 TO 20
]200 X = A /\ 2
]300 PRINT X
]400 NEXT A
]500 END

The sequence of statements from line 100 to 400 is known as a loop.
When the computer encounters the FOR statement in line 100, the
variable A is set to I. Xis then calculated and displayed in lines 200 and
300.

The NEXT statement in line 400 will request the next value for A.
Execution returns to line 100 where the value of A is incremented by 1 (to
2) and then compared to the value appearing after TO. Since the value of

116 Coleco ADAM User's Handbook

A is less than that value, the loop will be executed again with the value of
A set at 2.

The loop will continue to be executed until A attains a value greater
than 20. When this occurs, the statement following the NEXT statement
will be executed.

In our preceding example, A is known as an index variable. If the
optional keyword STEP is not included with the FOR statement, the
index variable will be incremented by I every time the NEXT statement is
executed.

STEP can be included at the end of a FOR statement to change the
value by which the index variable is incremented. The integer a ppearing
after STEP is the new increment. For example, if our preceding example
were changed as follows,

]100 FOR A= 1 TO 20 STEP 2
]200 X =A/\ 2
]300 PRINT X
]400 NEXT A
]500 END

the index variable, A, would be incremented by 2 every time the NEXT
statement was executed.

One loop can be placed inside another loop. The innermost loop is
known as a nested loop. The following program contains a nested loop.

]100 DIM R(2,3)
]200 DATA 10,20,30,40,50,60
]300 FORK= 1 TO 2◄•i--------..

1]400 FOR J = 1 TO 3 • 1

]500 READ R(K,J} inner loop outer loop
]600 NEXT J~---- I
]700 NEXT K◄•i-----------

Our preceding example is used to read data into the numeric array R.
Arrays as well as the READ and DATA statements will be discussed in
Chapter 8.

One error that you should take care to avoid when using nested loops
is to end an outer loop before an inner loop is ended: Also, be certain that
every NEXT statement has a matching FOR statement. If the BASIC
interpreter cannot match every NEXT statement with a preced ing FOR
statement, an error will result.

Conditional, Branching, and Looping Statements 11 7

Error Handling

In some situations, it is easier to correct problems as they occur in a
program, rather than to avoid them. This technique is called error han­
dling. SmartBASIC allows the use of an ON ERR GOTO statement to
specify a line number where the program should proceed if an error
occurs. This feature allows a portion of the program to be set aside as an
error handling routine.

Error handling routines are commonly used to correct small prob­
lems that occur infrequently in a program. When appropriate corrections
have been performed, a RESUME statement can be used to branch the
program back to the location where the error occurred. The following
program demonstrates the technique used to branch a program in the

event of an error.

]10 ONERR GOTO 100
]20 INPUT "INPUT x:";x
]30 y = X /\ .5
]40 PRINT "The square root of";x; "is" ;y
]50 END
] 100 y = -x A .5
]110 PRINT "The square root of ";x;" "is" ;y;"i"
]120 END

The preceding example program contains an ON ERR GOTO
statement at line 10. This statement indicates that the program control
will branch to line 100 in the event of an error. An ON ERR statement
must be executed in a program before an error actually occurs.

The program calculates the square root of a value input for the
variables x. However, BASIC does not allow the square root of negative
numbers. These values can only be defined in the context of complex
numbers, where the symbol "i" is used to represent the square root of -1.
As a result, the square root of-4 could be represented by the value 2i since

the following expression is true.

Y-4 =Y4 f-i = Y4 i = 2i

It is not necessary to understand the use of "complex" numbers to

understand the example. The main concept of the program is that the

statement at line 30 would normally have caused an error if a negative

118 Coleco ADAM User's Handbook

value had been input for the variable x. However, in this case, the
ONERR statement causes the program to branch to line 100 whenever an
error occurs.

Lines JOO and 110 perform an alternate set of operations whenever a
negative value is input for x. Some typical applications of the sample
program would appear as follows.

)RUN
Input x: 4 ..,. __ user's response
The square root of 4 is 2

)RUN
Input x: -16~--user's response
The square root of -16 is 4i

A RESUME statement can be used at the end of an error handling
subroutine to branch the program control back to the section of the
program where the error occurred. The function of a RESUME state­
ment is analogous to the use of a RETURN statement at the end of a
subroutine.

8
Tables and Arrays

Introduction

In Chapter 5 we introduced the concept of variables. A variable is
designed to hold a single data item - either string of numeric. However,
some programs require that hundreds or even thousands of variable
names be used.

The processing of large quantities of data can be greatly facilitated
through the use of arrays and tables in a program.

SUBSCRIPTED VARIABLES

Obviously, the use of thousands of individual names could prove
extremely cumbersome. To overcome this problem, BASIC allows the
use of suscripted variables. Subscripted variables are identified with a
subscript, a number appearing within parentheses immediately after the
variable name. An example of a group of subscripted variables is given
below:

A(O} ,A(1} ,A(2} ,A(3) ,A(4} ,etc.

119

120 Coleco ADAM User's Handbook

Note that each subscript variable is a unique variable. In other words
A(O) differs from A(I), A(2), A(3), etc . . .

Arrays and Tables

Subscripted variables may be visualized as an array (or table). In our
previous example, the data contained in the array defined by A would
consist of a one-dimensional array with 11 elements.

A(10)

A(9)

A(B)

A(6)

A(S)

A(4)

A(3)

A(2)

A(1)

A(O)

Arrays can also have two or more dimensions. Two-dimensional
arrays are also known as tables. A table containing 6 rows and 8 columns
is depicted on the following page.

Rows

0

1

2

3

4

5

0

A(0,0)

A(1,0)

A(2,0)

A(3,0)

A(4,0)

A(S,0)

1

A(0, 1)

A(1,1)

A(2, 1)

A(3, 1)

A(4,1)

A(S, 1)

2

Columns

3

A(0,2) A(0,3)

A(1 ,2) A(1,3)

A(2,2) A(2,3)

A(3,2) A(3,3)

A(4,2) A(4,3)

A(S,2) A(S,3)

Tables and Arrays 1 21

4 5 6 7

A(0,4) A(0,5) A(0,6) A(0,7)

A(1,4) A(1 ,5) A(1 ,6) A(1,7)

A(2,4) A(2,5) A{2,6) A(2,7)

A(3,4) A(3,5) A(3,6) A(3,7)

A(4,4) A(4,5) A(4,6) A(4,7)

A(S,4) A(S,5) A(S,6) A(S,7)

Notice from our illustration that a position within the table is identi­
fied with a subscripted variable. The subscript contains two numbers. The
first number identifies the row number and the second identifies the
column. For instance, A(1,2) identifies the element located in column two

of row one.
Array variables can be assigned values and used with operators as

can any other variable. This is illustrated in the following example.

]10A(0)=5
]20A(1)=6
]30 A(2) = 7
]40 A(3) = 8
]50 A(4) = 9
]60 PRINT A(0) • A(1)
]70 A(S) = A(2) + A(3) + A(4)
]80 PRINT A(S)
]90 END
]RUN
30
24

DIMENSIONING AN ARRAY

Before an array variable can be used in a program, an area in
memory must be reserved to store its elements. This is known as dimen­
sioning the array and is accomplished with the DIM statement.

The DIM statement defines the maximum subscript value that can
be used for an array. For example, the following DIM statement:

DIM A(20}

122 Coleco ADAM User's Handbook

would define a one-dimensional array consisting of twenty-one elements
ranging from A(O) to A(20) inclusive.

Two-dimensional arrays are dimensioned as follows:

DIM A(4,7)

The preceding DIM statement would dimension an array consisting
of five rows with eight columns each.

Notice that a DIM statement was not included in our first example.
When a subscripted variable which has not been previously dimensioned
is referenced in a program, the array variable is automatically dimensi­
oned with a maximum subscript value of 10. If we added the following
program line to our example:

85 A(11) = 24:PRINT A(11) • A(1)

the following error message would be displayed:

?Bad Subscript Error in 85

This error is generated because an array variable was referenced with a
subscript greater than orginally stated.

If the following DIM statement was inserted in our example

rrogram:

5 DIM A(11)

it would execute properly, because A(l l) would have been defined by the
DIM statement.

Generally, it is good programming practice to dimension all array
variables and to group all DIM statements at the beginning of the
program. This prevents an array variable from inadvertently being refer­
enced before it has been dimensioned.

When an array is no longer needed in a program, the DIM statement
can be reversed with a CLEAR statement. This will free the memory area
previously reserved for the array. This is illustrated in the fallowing
program.

)10 PRINT FRE(0)
]20 DIM A(50,50)
]30 PRINT FRE(0)
]40 CLEAR
]50 PRINT FRE(0)
]60 END
]RUN
25992
12982
25992

Tables and Arrays 123

In line I 0, the number of available bytes in memory are displayed.
FRE is a function which displays the available free bytes in memory. FRE
is explained in more detail in Chapter 9.

In line 20, the DIM statement reserves an area in memory for a table
consisting of 260 I elements. From line 30, it is evident that the number of
free bytes has decreased substantially. This is due to the fact that an area
of memory has been reserved for the elements in table A.

In line 40, the CLEAR statement reverses the DIM statement and
the memory previously required for the elements in table A are freed.

DATA & READ Statements

Earlier, we discussed how data could be assigned to a variable with,
LET statement as well as how data could be input directly from the
keyboard and assigned to a variable with an INPUT or GET statement.
However, none of these statements are practical for assigning data values
to the individual variables in a large array or table. DATA and READ
statements are much more practical for assigning values to variables in an
array. DATA and READ statements can be used for assigning values to
any variable - not just array variables.

A typical DATA statement is shown below.

100 DATA "WILLIAMS" ,27,"ST.LOUIS" ,"314-727-1141 "

Notice that this DATA statement contains four data items, three of
which are string and one of which is numeric. In our example, we have
enclosed the string data items in quotation marks. However, this was not
actually required. In a DATA statement, a string only needs to be

124 Coleco ADAM User's Handbook

enclosed in quotation marks if it contains a comma, a colon, or if its first
character is a blank space.

DATA statements are used in conjunction with READ statements to
assign data values to variables. An example of a READ statement is given
below.

200 READ NAME$,AGE,CITY$,PHONE$

When a READ statement is executed, the computer will first search
for a DATA statement. When a DATA statement is found, the values in
the DATA statement will be assigned one-by-one to the variables in the
READ statement.

If the first DATA statement encountered does not have enough data
items to be assigned to all the variables in the READ statement, the next
DATA statement will be searched for. The values from this and succeed­
ing DATA statements will continue to be assigned to the variables in the
READ statement until all of the variables in the READ statement have
been assigned a value.

The computer keeps track of the next DATA statement data item to
be used via an internal pointer. When any future READ statements are
executed, this pointer will determine which is the next data item to be read
into the READ variable.

BASIC includes a statement known as RESTORE, which when
executed, sets the DAT A item pointer back to the beginning of the
DATA statement list. The use of the DATA item pointer and the effect of
RESTORE on it is depicted in Figure 8-1.

100 DATA 537,27,WILSON,276-46-4142
200 READ A,B
300 READ C$,D$

DATA Item List

Tables and Arrays 1 25

r 537 27 I WILSON 276-46-4142 l
Data Statement

Pointer
(Before Linc 200)

Data Statement
Pointer

(After Linc 200)

400 RESTORE
500 READ X,Y,2$

DATA Item List

Data Statement
Pointer

(After Linc 300)

1537 27 WILSON I 276-46-4142 1
Data Statement

Pointer
(After Linc 500)

Data Statement
Pointer

(After Linc 400)

FIGURE 8-1. DATA Statement Pointer

When not properly used, DATA and READ statements can be the
source of program errors. One potential error source occurs when the
program attempts to READ more data items than were given in the
DATA statements. Such an error would occur in the following program.

)100 DATA 7,8,11,13,15
)200 FOR K = 1 TO 7
)300 READ X(K)
)400 PRINT X(K)
)500 NEXT K
)600 END

In the preceding example, the program would attempt to read 7 data
items. However, since the DATA statement only contained 5 data items,
the following error message would appear:

?Out of DATA Error In 300

126 Coleco ADAM Use(s Handbook

Another potential source of error when executing DATA and READ
statements are situations where the program attempts to read a numeric
data item into a string variable or vice versa. If such an error is encoun­
tered the following error message will be displayed:

?Syntax Error

DATA and READ statements are often used in conjunction with
FOR, NEXT loops to read large amounts of data into arrays. An example
of this use of FOR, NEXT is given below:

]10 FORK :Q)TO 5
]20 READ NAMES$(K)
]30 READ AGE(K)
)40 NEXT K
]50 FOR J = 0 TO 5
]60 PRINT NAMES$(J),AGE(J)
]70 NEXT J
]80 END
]90 DATA Jim,10
]100 DATATom,11
]110 DATA Matt,9
]120 DATA Eric,10
]130 DATA Steve,10
]140 DATA Joe,9
]Run
Jim 10
Tom 11
Matt 9
Eric 10
Steve 10
Joe 9

An example of the use of the READ and DATA statements in
conjunction with a FOR, NEXT loop for the purpose of reading data into
a two-dimensional array is given in the following program.

l 10 DATA 10,20,30,40
1 20 DATA 50,60,70,80
1 30 DATA 90,10,20,30
1 40 FOR J = 0 TO 2
1 50 FORK= 0 TO 3
) 60 READ A(J,K)
1 70 PRINT A(J,K) ;" ";
] 80 NEXT K
1 90 PRINT
)100 NEXT J
)110 END
]RUN
10 20 30 40
50 60 70 80
90 10 20 30

Tables and Arrays 127

The preceding program would read data items into the table A() as
shown in Figure 8-2.

0

1

2

0

10

50

90

1

20

60

10

FIGURE 8-2. A() Array Values

2 3

30 40

70 80

20 30

9
Functions and String Handling

Introduction

In mathematics, a function is generally defined as a quantity whose
value will vary as a result of another quantity. In computing, functions
define operations that are performed on stings or numeric values.

In BASIC, a number of functions are already defined by reserved
words and are a part of the BASIC interpreter. These are known as
built-in functions (see Table 9-1). Built-in functions cover a wide range of
standard math operations such as absolute value, square root, loga­
rithms, etc. Built-in functions are also available for working with strings,
as well as a variety of other operations.

BASIC also allows the programmer to define his or her own func­
tions. These are known as user-defined functions. Both built-in and
user-defined functions will be discussed in this chapter, as well as in
Chapter 12.

129

130 Coleco ADAM User's Handbook

Built-in Numeric Functions

MATHEMATICAL FUNCTIONS

The majority of the SmartBASIC functions are used in mathemati­
cal applications. We will provide an overview of SmartBASIC's math
functions in this section. Each individual function will be described in
detail in Chapter 12.

Table 9-1. Smart BASIC Built-in Functions

ABS INT POS
ASC LEFT$ RIGHT$
ATN LEN AND
CHA$ LOG SCAN
COS MID$ SGN
EXP POL SIN
FAE PEEK SPC

SOR
STA$
TAB
TAN
VAL

1 11 of the SmartBAS IC ma the ma tical functions operate in much the
same manner. Each function is defined by a reserved word (ex. SIN for
Sine, COS for Cosine, LOG for Logarithm, etc.).

A numeric constant, variable, or expression may appear in paren­
theses following the reserved word which identifies the function. The
function for that numeric value will then be calculated by the computer.
The use of several mathematical functions is shown in Figure 9-1.

SmartBASIC includes the following three trigonometric functions:

SIN(N) = sine of the angle N.
COS{N) = cosine of the angle N.
TAN{N) = tangent of the angle N.

The angle N must be given in terms of radians. One radian is the
equivalent of 57.29578 degrees. One degree equals .017453 radians.

Therefore, the following can be used to calculate a trigonometric
function with its argument (X) given in degrees:

SIN(.017453 • X)
COS(.017453 • X)
TAN(.017453 • X)

Functions & String Handling 131

] 100 PRINT SIN(.47) \
] 200 PRINT COS(.98)
] 300 PRINT TAN(.37)
] 400 PRINT SQR(49)
] 500 PRINT INT(5.79)
} 600 PRINT INT(-5.79)
) 900 PRINT ABS(-4.7)
)1000 PRINT SGN(2.7)
)1100 PRINT SGN(-2.7)
)1200 END
]RUN
.4528863
.5570226
.3878632
7
5
-6

4.7
1
-1

FIGURE 9-1. Mathematical Functions

The other three principal trigonometric functions: secant, cosecant,
and cotangent can be computed by using SIN, COS, and TAN as shown
in the fallowing idenities.

SEC(X) = 1/ COS(X)
CSC(X) = 1/ SIN(X)
COT(X) = COS(X)/SIN(X)

SmartBASlC also includes the arctangent function ATN. This func­
tion returns the angle (expressed in radians) whose tangent is given in its
argument.

ATN(X) = angle in radians whose tangent equals X

-
The following formula ca n be used to calculate the angle expressed in

degrees (rather than radians) whose tangent is given in X.

57.29578 * ATN(X)

132 Coleco ADAM User's Handbook

BASIC also contains functions for calculating natural logarithms
and exponentials. The exponential formula takes the following form:

A= EXP(B)

The preceding EXP function is calculated by computing the value of
e raised to the B power. e is known as the base of natural logarithms. The
value e in SmartBASIC is 2. 71828183.

The natural logarithm of a number may be calculated with the LOG
function.

LOG(X) = natural logarithm of X

Logarithms with a base other than e may be calculated using the
following formula:

LOGb(X) = LOG(X)/LOG(b)

where b is the base of the logarithm.
SmartBASIC includes the SQR function for determining the posi­

tive square root of its argument.

SQR(X) = positive square root of X

I The square root of a number can also be calculated with the expo­
.lential arithmetic operator. The following expression,

X A (1/2)

will calculate the square root of X. The arithmetic exp0nential operator
can also be used to calculate a root other than the square root (ex. cube
root) as shown below.

X I\ (1/3)

SmartBASIC also includes several functions that can be used in
working with numeric values. These include INT, ABS, and SGN.

The INT function returns the integer with the greatest value which is
less than or equal to its argument. INT takes the following form:

INT(X) = highest integer whose value
is less than or equal to X

Functions & String Handling 133

Figure 9-1 contains examples of the usage of the INT function .
The ABS function returns the absolute value of its argument. ABS

takes the following form.

ABS(X) =Ix I

An example of the use of ABS appears in Figure 9-1.
The SGN function returns the sign of its argument. An example of

the use of SGN appears in Figure 9-1.

USER-DEFINED FUNCTIONS

In the preceding section, we discussed a number of predefined
SmartBASIC functions. SmartBASIC also allows the user to define his
own functions. These are known as user-defined functions. A user­
defined function must be defined with the DEF FN statement before it
can be used in the program.

For example, the following DEF FN statement would define a
function in which the argument was squared and 1 was then subtracte •
from that calculation.

100 DEF FN A(X) = X /\ 2-1

The name of the function (FN A) appears immediately following tll
DEF statement. Any valid variable name may be used as a user-defined
function name. The following would be a valid function name:

FN TANH

In our first example, notice the X in parentheses following the function
name. This is known as a dummy argument. Any valid variable name can
be substituted for X as the dummy argument.

When the user-defined function is called in the program, the argu­
ment supplied with the function when it is called will be substituted for the
dummy argument whenever it appears on the right-hand side of the DEF
FN statement. The expression is then evaluated and the value is returned
as the value of the function.

134 Coleco ADAM User's Handbook

)10 M = 3.9878
]20 DEF FN S(X) = COS(X) + SIN(X)
)30 PRINT FN S(M)
]RUN
-1 .41159969

The previous example contains a program that has a DEF FN
statement at line 20. The function is assigned the name S, and the dummy
argument X is used in the function. The operations in the function
(COS(X) + SIN(X)) can be as complicated as necessary. At line 30, the S
function is evaluated at the value of the variable M. The function substi­
tutes 3. 9878 for the dummy argument X and returns a numeric value that
is displayed by the PRINT statement.

Strings & String Handling

As a programmer, you will encounter a number of situations where
you may need to work with string data. For example, you might want to
combine several strings, compare two strings, separate portions of a
string, or even convert string data to its numeric equivalent. Smart­
BASIC allows for all of these.

STRING CONCATENATION

The process of joining together one or more strings is known as
l oncatenation. The arithmetic operator for addition(+) is used for string
concatenation. However, concatenation is very different from addition.
In concatenation, the strings being concatenated are joined to form a new
string as shown below.

)100 A$= "JOHN"
]200 8$ = "SON"
]300 C$ = A$ + 8$
]400 PRINT C$
)500 END
]RUN
JOHNSON

Either string constants or variables may be concatenated. Any
number of strings may be concatenated as long as the resulting string
contains 255 or fewer characters.

Functions & String Handling 135

The same relational operators are used for comparing strings as are
used for comparing numeric data. These include the following:

< less than
< = less than or equal to

> --greater than
> = greater than or equal to

= equal to
< > -~ not equal

Strings are compared one character at a time beginning with each
string's first character. This comparison is made with each character's
corresponding ASCII code.

Fortunately, ASCII code comparisons are relatively simple. A com­
parison of the characters by ASCII codes is almost identical to an
alphabetical comparison. A character is less than another with respect to
ASCII codes, if that character precedes it in the alphabet. Lowercase
letters are always greater than their uppercase counterparts and digits are
always less than letters.

Like numeric relational operators, string relational operators return
a value of O if the relation is false and a value of l if it is true. Whenever
strings are being compared they must be enclosed within quotation
marks.

STRING HANDLING FUNCTIONS

SmartBASIC contains a number of string handling functions whit.
allow the user to extract a part of a string. These functions are LEFT$,
MID$ and RIG HT$.

The LEFT$ function takes the following format:

LEFT$(string,X)

where string is the string on which the operation is to be performed and X
is the number of characters to be extracted. The LEFT$ function will
extract the leftmost number of characters given in Xfrom the string given
in string.

136 Coleco ADAM User's Handbook

Figure 9-2 contains an example of the use of LEFT$

)100 A$ = "JOHNSON"
]200 8$ = LEFT$(A$,4)
]300 PRINT 8$
)400 END
]RUN
JOHN

FIGURE 9-2. LEFT$

The RIG HT$ function works exactly like the LEFT$ function
except that the rightmost number of characters specified are returned.
Figure 9-3 contains an example of the use of RIGHT$.

)100 A$= "JOHNSON"
]200 8$ = RIGHT$(A$,3)
]300 PRINT 8$
]400 END
]RUN
SON

FIGURE 9-3. RIGHT$

The MID$ function can be used to return a portion of a string. MID$
takes the following format:

a$ = MID$(b$,x[.y])

The string being returned is a$. a$ is being returned from b$. The
string being returned will begin with the xth character in b$. The number
of characters returned from b$ is specified in y .y is an optional parameter.
If y is omitted, all rightmost characters in b$ will be returned in a$. An
example of the use of MID$ to return a portion of a string is given in

Figure 9-4.

)100 X$ ="NEWCASTLE"
)200 Y$ = MlO$(X$,5,4)
)300 PRINTY$
)400 ENO
]RUN
CAST

FIGURE 9-4. MID$

Functions & String Handling 137

STRING/NUMERIC DATA CONVERSION

Programmers often encounter situations where numeric data must
be converted into string data and vice versa. This is often the case where a
function is being used which will accept only string or numeric data as its
arguments.

The STR$ and VAL functions are used to convert numeric data to its
string equivalent and strings to their numeric equivalent repectively. The
ASC function is used to convert a single character to its ASCll numeric
equivalent. If ASC is given a string it will return the ASCll equivalent of
the first character in that string. The CH R$ function converts an ASCII
numeric code to an equivalent text character.

Examples of the use of STR$, VAL, CHR$, and ASC are given in
Figures 9-5 and 9-6.

)100 w =33578
)200 w$ = STR$(w): REM w$ = "33578"
)300 X = 33579
)400 x$ = STR$(x)
)500 y$ = w$ + x$: REM y$ = "3357833579"
)600 y = VAL(y$) : REM y = 3357833579
]700 z = INT(y/10000)
)800 PRINT z
]900 ENO
]RUN
335783

FIGURE 9-5. STR$ and VAL Example

138 Coleco ADAM User's Handbook

1100 A$= "GILBERT"
]200 A = ASC(A$)
]300 PRINT A
1400 X = 90
]500 X$ = CHR$(X)
]600 PRINT X$
1700 END
1RUN
71
z

FIGURE 9-6. CHR$ and ASC Examples

VARIABLE TABLE AND STRING STORAGE

BASIC maintains an area in memory in which an entry is maintained
.or every variable (including array variables) referenced either in a pro­
gram or in the direct mode. This memory area is known as the variable
table.

For numeric variables, the value currently assigned to that variable is
also stored in the variable table. When that variable's value is changed,
the value stored in the variable table will also be changed.

In SmartBASIC, the amount of memory required to store a numeric
value in the variable table remains constant. On the other hand, the
amount of memory required to store a string variable's value can vary
depending upon that value.

Since the memory space required to store a string value can vary, it
would be difficult to store these values in the variable table, as that table
would have to be continually revised as different values were assigned to
string variables. For this reason, SmartBASIC stores string values in a
separate memory area known as string space.

SmartBASIC stores a value in the variable table which associates
the string variable name (in the variable table) with its associated value in
string space. This is known as the descriptor. The descriptor describes the
number of characters currently assigned to the string variable as well as its
location in string space.

Descriptors are not limited to referencing string values stored in the
string space. Descriptors can reference strings stored anywhere within
BASIC's working area - including file buffers and the program itself.

Functions & String Handling 139

When a string constant is assigned to a string variable in a BASIC
program (ex. 10 A$= "JOHN"), that constant need not be stored in the
string space as the descriptor can reference it in the program storage area.

HOUSEKEEPING AND FRE

Areas assigned to strings can become unused because strings in
BASIC can have variable lengths. Every time a different value is assigned
to a string variable, its length may change. This may cause the space
assigned to a string to become partially unused. If the string space is in
need of a housekeeping SmartBASIC will automatically halt program
execution and perform one. This operation may be time consuming and
confuse the user.

The FR E function allows the programmer to determine the amount
of available memory and perform a housekeeping at the same time. The
FRE function requires an argument, but the value of the argument has no
effect on the operation of the function or the value returned . A tyical FRE
function call would appear in a program as follows.

100 PRINT FRE{O)

10
Files and File Handling with SmartBASIC

Introduction

The Digital Data Drive supplied with the ADAM allows programs
and data to be easily stored on Digital Data Packs. This feature adds a
great deal of versatility to the ADAM, since the program and data stored
in its memory are erased each time the computer is turned off. The Digital
Data Drive allows the creation of "permanent'' copies of programs and
data.

FILE TYPES

Programs and data are stored on a Data Pack in units called files.
Files consist of a single program or an organized collection of data items.
Files are divided into two categories: program files and data files. As their
names suggest, program files can only accommodate a program, while
data files can hold only data.

FILENAMES

SmartBASIC requires that each file be assigned an appropriate
name. This allows the files to be easily distinguished. Filenames can
consist of I to 10 characters. Generally, a program's filename should

141

142 Coleco ADAM User's Handbook

provide some clue as to the actual contents of the files. The fallowing are
all acceptable filenames.

ACCOUNT27
FORECAST
BUDGET
ADDRESSES

Filenames can include uppercase letters, lowercase letters, and digits
as well as many special characters including the foil owing:

11@#$%. &'-+ t

Each file on a Data Pack must have a unique filename. When an
attempt is made to store a file with the name of a file that already exists on
a Data Pack, that file will be saved in place of the original file . The
original file will be placed in a backup file that can only be accessed by the
word processor.

Program Files

SAVING PROGRAMS

The procedure used to save a program is very simple and straight­
forward . When a program is present in the computer's memory, it can be
saved on a Data Pack with the SAVE command. The SAVE command
must be followed by an appropriate filename. The following example
statements demonstrate the correct format for the SAVE command.

]SAVE homework
]SAVE FORECAST28

Once a SAVE command has been issued, the Data Drive will operate
for about a minute. Once Data Drive operation has ceased, the prompt
will once again appear on the display.

LOADING PROGRAMS

Programs that have been previously saved on a Data Pack can be
reloaded into the computer's memory through the use of a LOAD com-

Ales and Ale Handling with SmartBASIC 143

mand. LOAD commands are analogous to the SAVE command in that
only the program filename needs to be included in the command.

The fallowing example statements demonstrate the use of a LOAD
command.

] LOAD homework
]LOAD FORECAST28

When a LOAD command specifies a program file that does not exist
on a Data Pack, the following message will be displayed.

File Not Found

When the LOAD command is used to recover a previously saved
program, the program that resides in the computer's memory will be
erased. In other words, the use of the LOAD command implies that the
NEW command will be executed before the program is loaded from the
Data Pack.

RUNNING PROGRAMS

The LOAD command can be used to recover a previously stored
program, but the RUN command is still required to execute the program.
This two-step procedure can be replaced by a single RUN command if a
filename is specified. This concept can be clarified using the following
example.

]LOAD PROGRAM
]RUN

]RUN PROGRAM

The last statement in the preceding example causes the same effect as
the combination of the first two. Like the LOAD command, the RUN
command causes the computer's memory to be cleared before the new
program is loaded. The RUN command can be included in a program to
cause the computer to load and execute another program.

144 Coleco ADAM User's Handbook

CATALOGING A DATA PACK

As files are saved on a Data Pack, a list of filenames will be
maintained by the computer. The CATALOG command can be used to
display a directory of the files currently saved on a Data Pack. When the
CATALOG command is executed, the Data Drive may operate for a few
moments before the directory is displayed . A typical directory might

"'near as follows.

Volume: FIRST DIR

A 15 FORECAST
A 10 homework
A 2 Program.A

226 Blocks Free

The first column of the directory contains an uppercase letter A to
indicate a Smart BASIC program file. The second column of the directory
indicates the number of blocks that the program occupies. A block is a
unit of storage space on a Data Pack. A lowercase A indicates a backup
file.

The third column of the directory contains the names of each file
stored on the Data Pack. The filenames are recorded in the directory
exactly as they are specified in a SAVE statement.

RENAMING A FILE

The name of any file stored on a Data Pack can be easily changed.
The RENAME command is used for this function. When renaming a file,
simply enter the RENAME command followed by the current name of
the file and finally, the new name of the file. Be sure to separate the old
and new names with a comma. The following example statement would
cause the file currently named OLD to be renamed as NEW.

]RENAME OLD.NEW

If the RENAME is used to specify a new filename that already exists
on the Data Pack, the RENAME command will have no effect.

Ries and Ale Handling with SmartBASIC 145

DELETING A FILE

The DELETE command can be used to erase files that exist on a
Data Pack. The DELETE command need only be fallowed by an
appropriate filename. For example, the following command could be
used to delete a file named OLD.

]DELETE OLD

PROTECTING A FILE

The LOCK command can be used to prevent a file from being
accidentally deleted . Once a file has been locked , it can still be loaded,
resaved and renamed, but it cannot be deleted . An asterisk is displayed in
the directory adjacent to the name of the file.

The UN LOCK command can be used to remove the file's protection.
The fallowing series of commands illustrates the use of file protection.

)SAVE PROGRAM
]LOCK PROGRAM
]CATALOG
Volume: FIRST DIR
* A 10 PROGRAM
243 Blocks Free
]DELETE PROGRAM
File Not Found
]UNLOCK PROGRAM
] DELETE PROGRAM
]LOAD PROGRAM
File Not Found

Note that once the file has been saved and locked, the filename will
appear in the directory with an asterisk. The file cannot be deleted until it
has first been unlocked. The final LOAD command indicates that the file
has actually been deleted .

Initializing a Data Pack

All of the files stored on a data pack can be deleted with a single
command. The INIT command can be used to erase the contents of the
directory and to establish a volume name. The volume name is the title

146 Coleco ADAM User's Handbook

that appears on the display each time the directory is accessed. The
desired volume name must be included in the INIT command. For
example, the following INIT statement clears the directory and sets the
volume name to FINANCIAL.

)INIT FINANCIAL
]CATALOG
Volume: FINANCIAL

253 Blocks Free

Notice that the INIT command causes the previous files of a Data
Pack to be erased.

USING DATA DRIVE COMMANDS IN PROGRAMS

The commands used to manipulate files can be included in Smart­
BASIC programs through PRINT statements. 1(s a result, files can be
saved, loaded, renamed, deleted; locked or unlocked during the execution
of a program.

A special character code can be used to indicate that a PRINT
statement contains a Data Drive command. The special character can be
generated with the CHR$ function as follows:

CHR$(4)

When the special character is used in a PRINT statement, the
subsequent data is considered to be a Data Drive command. For example,
the following statement would cause the file named PROGRAM to be
deleted.

PRINT CHff(4);"DELETE PROGRAM"

It is usually convenient to define a string variable which references
the special character. For example, the following statement could be used
to simplify this process.

D$ = CHR$(4)

Ales and Ale Handling with SmartBASIC 14 7

This statement allows the following PRlNT litatements to perform
Data Drive commands.

Data Files

PRINT D$;"SAVE PROGRAM"
PRINT 0$;"CATALOG"
PRINT 0$;"DELETE PROGRAM"
PRINT D$;"RUN PROGRAM"

Data files provide a convenient means of storing information that
can later be used in programs. Data files may contain any number of
numeric or string values. These data items are .. written" into the file in a
sequential manner, and must be .. read"from the file in the same manner.

A data file can be easily manipulated by SmartBASlC programs
through the use of PRINT statements containing Data Drive commands.
The most commonly used Data Drive commands for data files are
OPEN, CLOSE, READ and WRITE.

OPENING AND CLOSING FILES

Before a file can be accessed, it must first be opened. As a result, an
OPEN command must appear in a program before any other data file
commands. An OPEN command must include the name of the file to be

opened.
A file does not need to exist before a program actually accesses the

file. In other words, if an OPEN statement specifies a file that does not
exist, a new file will be created.

Since each active file requires an allocation of the computer's
memory, it is recommended that files be closed when they are not in use.
As expected, a CLOSE statement can be used to close a previously
opened file. For a particular data file called EXPENSES, the OPEN and
CLOSE commands would have the following structure.

PRINT CHR$(4);"0PEN EXPENSES"
PRINT CHR$(4);"CLOSE EXPENSES"

A CLOSE command is not an essential aspect of data file handling
because each file is automatically closed when a SmartBASlC program

ends.

148 Coleco ADAM User's Handbook

READING AND WRITING DATA

Data is written to a file in essentially the same manner it is written to
the display. However, a WRITE command must be issued before the data
can be recorded on a Data Pack. Once a WRITE command has been
issued, any subsequent PRINT statement will cause data to be output to
the file instead of to the display. Consider the following example program
which outputs ten numeric values, to a data file.

)10 d$ = CHA$(4)
)20 PAINT d$; "OPEN. OUTPUT"
]30 PAINT d$; "WAITE OUTPUT"
)40 FOR t = 1 TO 10
)50 PAINT t
)60 NEXT t
]70 PAINT d$; "CLOSE OUTPUT"
)80 END

The assignment statement at line IO causes the string variable d$ to
be assigned the value of the special character, CH R$(4). Line 20 estab­
lishes the data file and Line 30 indicates that the subsequent PRINT
statements will cause data to be sent to the file. The loop from lines 40 to
60 causes the data to be output before the file is closed at line 70.

The method used to input data from a file is very similar to that used
to input data from the keyboard . However, a READ command must be
issued before data can be accepted from a file. Once a READ command
has been executed, data can be retrieved from a file through the use of
INPUT statements. It is usually convenient to include a prompt message
in an INPUT statement to supress the question mark which is ordinarily
generated.

Before data can be read from a file, the data must first have been
saved in an appropriate format. The previous example program can be
modified is such a way as to recover the data from the file OUTPUT.

]10 d$ =CHR$(4)
]20 PAINT d$;"AEAD OUTPUT"
]30 PRINT d$;"READ OUTPUT"
]40 FORt=1TO10
]SO INPUT "";x: PRINT x
]60 NEXT t
]70 PRINT d$;"CLOSE OUTPUT"
]80 END

Ales and Ale Handling with SmartBASIC 149

Notice that only lines 30 and 50 have been altered . These lines
indicate that the data will !Jc input rather then output. As a result, this
program recovers the data stored in the file OUTPUT.

The storage of data items in data files must be performed carefully.
When values are written to a data file, each individual value must be
properly set apart from the rest of the data in the file. A special character
called a Carriage Return (CR) must be used to separate the data items.

The PRINT statements used to write data to a file are analogous to
the statements used to output data to the display.

Recall from the discussion of the PRINT statement in Chapter 6 that
a CR is generated at the end of each PRINT statement unless the
statement ends with a comma or semicolon. As a result, the easiest means
of outputting data to a file is to include each data item in its own PRINT
statement. The following program demonstrates this principle. Notice
that only variable (x$) appears in the PRINT statement.

]100 d$ = CHR$(4)
]200 PRINT d$;"OPEN TEXT"
)300 PRINT d$; "WRITE TEXT"
]400 INPUT "";x$
]500 PRINT x$
]600 IF x$ = "END" THEN 800
]700 GOTO 400
]800 PRINT d$; " CLOSE TEXT"
}900 END

When the preceding example program is executed, a data file named
TEXT will be established Data entered at the keyboard will be written to
the file until the work END has been entered. This value, called a flag
value, determines the end of the data entry procedure.

The data can be recovered from the file by editing line 300 as follows.

300 PRINT d$;"READ TEXT"

More than one data item can be included in a PRINT statement, as
long as each individual data items is separated with the CR character.
This is illustrated in the following example. Note the usage of CH R$(13)

to denote CR.

150 Coleco ADAM User's Handbook

]100 d$ = CHF1i4)
)200 INPUT "name? ";n$
]300 INPUT "address? ";a$
)400 INPUT "phone? "p$
)500 PRINT d$;"OPEN TEXT"
)600 PRINT d$;"WRITE TEXT"
)700 PRINT n$; CHR$(13); a$; CHR$(13); p$
)800 PRINT d$; "CLOSE TEXT"
)900 END

The following program can be used to recover the data stored in the
file created in our preceding example. The HOME statement at line 500

• 0 display to be cleared before the output appears.

)100 d$ = CHR$(4)
)200 PRINT d$; "OPEN TEXT"
)300 PRINT d$; "READ TEXT"
]400 INPUT'"'; n$
]500 INPUT ""; a$
)600 INPUT ""; p$
]700 PRINT n$; CHR$(13); a$; CHR$(13); p$
)800 PRINT d$; "CLOSE TEXT"
)900 END

The 1/0 Monitor

The data being transferred between the computer and Data Drives
can be displayed on the monitor as that transfer occurs. The MON and
NO MON commands can be used to activate and deactivate the monitor.

The monitor can be used to display data being output, data being
input, and/ or Data Drive commands. The letters C, I and Oare used to
select the command monitor, input monitor and output monitor. Table
JO-I summarizes the modes of the 1/ 0 monitor.

Table 10-1. MON Command Summary

MON Command Data Monitored

MON C,1,0 Commands, Input and Output
MONC,I Commands and Input
MON C,O Commands and Output
MON 1,0 Input and Output
MONO Output
MONI Input
MONG Commands

Ries and Ale Handllng with SmartBASIC 151

The fallowing program demonstrates the use of the l/ 0 monitor.
Notice that the NOMON cancels the MON command.

)100 d$ = CHR$(4)
)110 PRINT d$;"MON C,1,O"
)120 PRINT d$;"OPEN FILE"
)130 PRINT d$;"WRITE FILE"
] 140 FOR j = 1 TO 5
)150 PRINT j
)160 NEXT j
)170 PRINT d$;"CLOSE FILE"
)180 PRINT d$;"NOMON C,1,O"
)190 PRINT d$;"DELETE FILE"
]RUN
MON C,1,O
OPEN FILE
WRITE FILE
1
2
3
4
5
.CLOSE FILE
NOMONC,1,O

PROBLEMS WITH DATA FILES

Occasionally, a programming error may occur in which extremely
large files may be accidentally created. When this situation occurs, a No
More Room error may occur even after these troublesome files have been
deleted. In this situation, data files will not be allowed on the particular
Data Pack until it is initialized.* If this procedure becomes necessary, be
sure that you have copies of all your important files, then use the INIT
command. Keep in mind that the IN IT command eliminates every file on

a Data Pack.

• A Smart BASIC Data Pack cannot be initialized.

tt
ADAM Graphics

Introduction

The Coleco ADAM has three different display modes, one text mode
and two graphics modes. These modes may be combined into four
different display formats. Both of the graphics modes are color capable.
These two modes will be discussed in this chapter.

In its high resolution mode, the ADAM can display 14 colors with a
screen resolution of 256 x 192 pixels.* Although most competitively
priced home computers can support a screen resolution comparable to
the ADAM 's, none can display 14 colors in a high resolution mode. ln
fact, most can display only 2-6 colors at high resolution. The Coleco is
outstanding at producing stationary screen images. As advanced as the
ADAM 's color hardware is, it lacks the hardware to smoothly move
images across the screen. This limitation is apparent when the movement
of large objects is attempted.

• A pixel can be defined as a single screen coordinate.

153

154 Coleco ADAM User's Handbook

Low Resolution Graphics

The low resolution graphics mode combines a graphics display with
four lines of text display. The graphics display has a resolution of 40 x 40
pixels and is capable of displaying 16 colors. The four lines of text are
located directly beneath the graphics display.

COMMANDS

The GR command is used to call the low resolution graphics mode.
This command configures the computer hardware to display the graphics
plus text format. This command also clears the display memory so that
the screen will initially be black. The GR command can be used in a
program or executed directly from the keyboard, as can all graphics
commands.

GR set low resolution
graphics & text

Besides clearing the screen, the GR command also sets the low
resolution .. next color" register to 0. This register stores the numeric value
of the next color to be displayed.

Before any graphics information can be plotted on the screen, a color
must be selected. This is accomplished through use of the COLOR
command. The correct syntax of this command is as follows:

COLOR= x

x represents a color number between O and 15. If x is not in this
range, an .. Illegal Quantity Error" results. The colors and their associated
numbers are listed in Table 11-1. Although SmartBASIC is similar to
Applesoft BASIC, the two execute the COLOR command differently.
Applesoft allows x to range from O to 255. This point should be noted
when transposing programs written in Applesoft into Smart BASIC.

ADAM Graphics 155

TABLE 11-1. Low Resolution Color Numbers

0- black
1- magenta
2- dark blue
3- dark red
4- dark green
5- grey
6- medium blue
7- light blue

8- yellow
9- medium red

10- grey
11- pink
12- light green
13- light yellow
14- cyan
15- white

After a COLOR has been selected, information can be plotted to the
screen. This is accomplished by using the PLOT command. The correct
syntax of this command is as follows:

PLOT x,y

x is the column number. y is the row number. The column numbers
extend from O (left) to 39 (right). The row numbers extend from O (top) to
39 (bottom). For example, the fallowing program randomly plots small
squares on the screen. For a nice visual effect, allow the program to run
awhile. To stop the program, press CONTROL-C.

]10 GR
]20 COLOR= 16.RND(1)
]30 PLOT 40.RND(1),40.RND(1)

]40 GOTO 20 l
VLIN and HLIN can be used to plot consecutive pixels. vuL ..

HLIN are abbreviations for Vertical LI Ne and Horizontal LI Ne, respec­
tively. The correct syntax for the VLIN command is as follows:

VLIN y,,y2 AT x

y 1 and y 2 represent the range of row numbers. x represents the
column number. The following VLIN command will plot every pixel in
column 30 from row 4 to row 24.

VLIN 4,24 AT 30

156 Coleco ADAM User's Handbook

The correct syntax for an H LIN command is as follows:

HUN x1,X2 AT y

x1 and x2 represent the range of column numbers. y represents the
row number. The following HLIN command will plot every pixel in row
14 from column 2 to column 37.

HUN 2,37 AT 14

After information has been output to the screen, it may become
necessary to determine which color is displayed at a certain screen posi­
tion. The function SCRN takes as its arguments the row and column
numbers, and returns the color number. The correct syntax of the SCRN
command is as follows:

X = SCAN (x,y)

x represents the column number. y represents the row number. Upon
execution of the preceding command, X will be assigned the value of the
color at screen location column =x, row =y.

Use of Low Resolution Graphics

The use of low resolution graphics is usually limited to drawings and
simple charts. However, the BASIC programmer may elect to use low
resolution graphics as a trade-off to increase program speed . The speed of
low resolution graphics, as opposed to high resolution graphics, will be
utilized when the game, .. BARACADE", is designed for the ADAM,
later in this chapter.

CHARTS

Simple bar charts are easily implemented by using low resolution
graphics. The text window may be used for documentation or labels. For
example, the following program displays an annual sales chart. Line IO
clears the screen and sets up low resolution graphics. Lines 20-30 print the
documentation. Lines 40-110 draw the chart using random figures.

ADAM Graphics 157

] 10 GR:HOME
l 20 PRINT "WIDGET INC. STOCKS"
l 30 PRINT "RED= 1983 GREEN= 1984"
l 40 FOR I = 6 TO 35
l 50 G = 15.RND(1)
l 60 R =15 + 15.RND(1)
l 70 COLOR= 12
] 80 VLIN G,39 AT I
) 90 COLOR= 3
]100 VLIN R,39 AT I
]110 NEXT I

Writing a Game Program

In this section, the game, .. BARACADE" will be designed . The
object of the game is to avoid the baracades, your own trail , and your
opponent's trail. The game will be written in BASIC so that it may easily
be modified. If the reader does not wish to follow the step by step
designing of BARACADE, he may page through the chapter. All
program lines may easily be distinguished from the rest of the text. To
play BARACADE, merely enter every line belonging to the program.

The first step in designing .. BARACADE" is to program the compu­
ter to draw a trail. The following statements accomplish this.

) 10 GR:HOME
] 70 X(0)=15:Y(0)=20
] 80 DX(0) = 1 : DY(0) = 0
]110 TEMP= PDL(S - I)
]130 IF TEMP= 1 THEN DY(I) = -1 : DX(I) = 0
]140 IF TEMP= 2 THEN DY(I) = 0: DX(I) = 1
]150 IF TEMP= 4 THEN DY(I) = 1 : DX(I) = 0
]160 IF TEMP= 8 THEN DY(I) = 0: DX(I) = -1
)170 X(I) = X(I) + DX(I)
]180 Y(I) = Y(I) + DY(I)
]200 COLOR = I+ 3
]210 PLOT X(l),Y(I)
]230 GOTO 110

Line IO clears the screen and enables low resolution graphics. Line 70

sets the initial position at screen location (15,20). The DX and DY in line

80 are the direction variables.

158 Coleco ADAM User's Handbook

(-1)

(0) (-1) .,.. ___,.(+1)
(0)

(+1)

DY

DX

Initially, the direction of movement is set to the right. Lines 110-230
set up a loop which monitors joystick# I and acts accordingly. Since I= 0
everywhere in this program, the variable TEMP is assigned the value of
PDL(5). The value returned corresponds to the position of joystick# l.
PDL(4) will later be used with joystick #2.

1

0
a~--..,_--► 2

4
Lines 130-160 recalculate the direction variables b~sed on the joy-

stick position. Lines 170-180 recalculate the current position variables,
and Line 210 plots the new position. Executing the program is the best
way to understand how it operates.

The program has been written so as to simplify the addition of a
second player. Array variables were used so that the same loop can
control both players. By including the foil owing three lines in the pro­
gram, a second player can enjoy BARACADE:

] 90 X(1)=25 : Y(1)=20
)100 DX(1) = -1 : DY(1) = 0
)220 I= NOT I

Lines 90-100 set the initial position and direction of the second
player. Line 220 alternates between selecting player# I (I = 0) and player
#2 (I = I).

ADAM Graphics 159

Recall from our description of .. BARACADE," that the purpose of
the game was for the players to avoid colliding with any barriers. The
SCRN function will be used to check for collisions. lf the following line is
added to the program, collisions will be detected.

)190 IF SCAN (X(l),Y(I)) > 0 THEN 240

The program has not yet been completed. When it is run, an error
will occur after every collision. This is because the computer has not yet
been instructed what to do upon collision. Let's tell it by adding the
following lines to the program.

)240 PRINT "COLLISION"
)250 FOR J = 1 TO 5
)260 PAINT CHR$(7);:NEXT J
)270 IF I = 1 THEN PRINT "RED WINS"
)280 IF I = 0 THEN PRINT "GREEN WINS"
)290 IF PDL(6) AND PDL(7) THEN 10
)300 GOTO 290

The PRINT statement in line 260 activates the television speaker.
Lines 270-280 determine the winning player. Lines 290-300 delay the
computer until both players are ready for another game. Pressing the left
button on the controller indicates that a player is ready.

A playing field can be added by using the following lines.
)20 COLOR= 1
)30 VUN 0,39 AT 0
)40 VUN 0,39 AT 39
]50 HUN 0,39 AT 0
]60 HUN 0,39 AT 38

The program as it stands has one minor bug. If a player tries to
change direction by 180°, he will lose. This is because, as far as the
computer is concerned, the player ran into himself. Although this does
not detract from game play, it can be annoying. When the following line is
added to the program, the bug will be corrected.

)120 IF (TEMP= 1 AND DY(I) = 1) OR
(TEMP= 2 AND DX(I) = -1) OR
(TEMP= 4 AND DY(I) = -1) OR
(TEMP= 8 AND DX(I) = 1) THEN 170

160 Coleco ADAM User's Handbook

The ideas in this section by no means exhaust the possibilities that
could be added to .. BARACADE". Other upgrades might include: keep­
ing track of games won, adding a more complex playing field, or making
one player faster than the other. The only two limiting factors are execu­
tion speed and one's imagination.

High Resolution Graphics

The ADAM can also be configured to display one of two high
resolution graphics formats. A graphics-only display is available that has
a resolution of 256 x 192 pixels. Also, a graphics plus text display is
available that has a resolution of 256 x 160 pixels. In this format, four
lines of text are located beneath the graphics display.

COMMANDS

All high resolution commands directly parallel their low resolution
.ounterparts. The ref ore, familiarity with the low resolution commands

will be assumed throughout the remainder of this chapter.
The HGR command can be used to configure the computer to

display the graphics plus text format. This command clears the display
memory so that the screen will initially be black.

HGR set high-resolution
graphics+ text

The HG R command clears the high resolution .. next color" register.
As previously mentioned, the ADAM can also be configured to

display a graphics-only format. The HGR2 command configures the
ADAM to the graphics-only high-resolution format. All high resolution
graphics commands operate in an identical fashion, whether used with
HGR or HGR2.

HGR2 set high-resolution
graphics only

An HCOLOR command must be used before any graphics may be
output to the high resolution display. This command selects the color that
will be displayed next. The correct syntax of this command is as follows:

ADAM Graphics 161

HCOLOR = x

x represents a number between O and I 5. Each number corresponds to a
specific color. This information is contained in Table 11 -2.

TABLE 11-2. High Resolution Color Numbers

0- black
1- green
2- violet
3- white
4- black
5- orange
6- blue
7- white

8- brown
9- dark blue

10- grey
11- pink
12- dark green
13- yellow
14- aqua
15- magenta

High resolut ion graphics has a single command that can be used to
output data to the screen. H PLOT is more flexible than PLOT, H LIN,
and VLIN combined . In HPLOT's simplest form, it functions as lo
resolution's PLOT command.

HPLOT x,y

x is the column number. y is the row number. The column numbe1.
extended from O to 255. The row numbers extend from O to 191. The
computer stores the column number and row number of the last plotted
coordinate.

The next form of the command is as follows:

HPLOT TO x,y

The computer executes this command by drawing a straight line
from the last point to the point with coordinates (x,y). The line color will
be the last color selected by the HCOLOR command. These two versions
of the H PLOT command may be combined as follows:

This command will cause a line to be drawn from screen coordinate

(x1y 1) to screen coordina te (x2,Y2) - x2 and J'2 will be stored as the last
plotted coordinate.

rgdir
Rectangle

164 Coleco ADAM User's Handbook

In order to erase a previously displayed shape, the ROTation,
SCALE and position variables must be the same as when the shape was
drawn. Effectively, XDRA W performs a ORA W using O (black) as the
color variable regardless of the selected high resolution color.

Programming Using High Resolution Graphics

The following program is an example of drawing using high resolu­
tion graphics.

] 10 HGR2
] 20 HCOLOR = 11
] 30 HPLOT 128,31
] 40 FOR I= 0 TO 12 STEP .2
] 50 HPLOT TO 128 + 55·s1N(l),96-65·coS(I)
] 60 NEXT I
] 70 HCOLOR = 8
] 80 FOR I = 1 TO 100
] 90 HPLOT TO 64 + 128.RND(1),24 + 48.RND(1)
)100 NEXT I
)110 SCALE= 5
)120 ROT= 0
]130 HCOLOR = 9
)140 DRAW 1 AT 108,90
)150 DRAW 1 AT 148,90
)160 ROT= 8
)170 SCALE = 2
)180 DRAW 1 AT 128,110
)190 HCOLOR = 2
)200 HPLOT 98,120 TO 108,140
)210 HPLOT TO 148,140 TO 158,120

Line JO enables high resolution full screen graphics. Lines 20, 70, 130
and J 90 set the color register. Lines 30-60 draw a circle. Lines 80-100 draw
I 00 random lines. Lines J J 0, J 20, 160 and J 70 set the size and rotation of
the squares that are drawn. Lines 140, 150 and 180 draw the squares.
Lines 200 and 210 draw the mouth.

, .
I I

.. -,

rgdir
Rectangle

12
SmartBASIC Reference Guide

Introduction

In this chapter, we will provide descriptions of the various com­
mands, statements, and functions used in SmartBASIC.

The fallowing rules and abbreviations will be followed in this chapter in
our configuration descriptions of the various BASIC commands, state­
ments, and functions.

I. Any capitalized words are keywords.

2. Any words, phrases, or letters shown in lowercase italics

identify an entry that must be made by the operator (unless
enclosed within brackets).

3. Any items enclosed in brackets [] are optional.

4. An ellipsis(...) shows that an item may be repeated as often

as desired.

5. Any punctuation marks, except the square brackets (ex.~, =)

must be included where they are shown.

165

166 Coleco ADAM User's Handbook

ABS

The ABS function returns the absolute value of the argument. A
number's absolute value is its value without regard to sign.

Configuration

ABS(argument)

The argument can be any numeric expression or numeric constant.

Example

]10 A= ABS(-1 * 7)

]20 PRINT A, ABS(2.99)

]RUN

7 2.99

In the preceding example, the absolute values of - 7 and 2.99 are
returned.

AND

AND is a logical operator. This reserved word is generally used
to compare two logical expressions in the context of an IF, TH EN
statement.

Configuration

expression1 AND expression2

expression/ and expression2 are Boolean expressions. If an expres­
sion was numeric (not zero), that expression would evaluate as true. For
example, if an expression evaluated to 5, AND would treat it as true . The
following is the truth table for AND.

SmartBASIC Reference Gulde 167

X y XANDY

true true true
true false false
false true false
false false false

In SmartBASIC, a true is represented by a I and false by a O.

Example 1

]10 A= 2

]20 B = 3
]30 IF (A = 2) AND (B = 3) THEN 60

]40 PRINT "AND FAILED LOGICAL TEST"
]50 GOTO 70
]60 PRINT " AND PASSED LOGICAL TEST"
]70 END

]RUN
AND PASSED LOGICAL TEST

In the preceding example, line 30 first tested the value of A. Since A
was set equal to 2 in line 10, the first expression was evaluated as true. The
value of B was then tested. It too evaluated as true. Using the logical AND
table, since expression} and expression2 evaluated to true, the whole
AND expression evaluated as true. The program will then execute the
THEN portion of the statement and will branch to line 60. At line 60, the
message AND PASSED LOGICAL TEST was displayed.

Example 2

PRINT (3 = 1 + 2) AND (-5)

1

In this example, 3 is compared to l + 2, so the first expression
evaluates as true. The second expression (-5) is non-zero, so it is also
evaluated as true. According to the AND truth table, if both expressions
evaluate as true, then the whole expression is true. SmartBASlC repres­
ent true as I, so a I is printed.

168 Coleco ADAM Use(s Handbook

ASC

The ASC function returns the ASCII code for the first character in
its argument.

Configuration

ASC (argument)

argument can be any string variable or constant.

Example

]A$= "A"

]PRINT ASC(A$), ASC("DEF")
65 68

. Lhe preceding example, the character in the string A$ was A. A's
ASCII equivalent is 65. In the second string, the first character D will be
used as the argument. A value of 68 is returned for the ASCII value of D.

ATN

The ATN function is a trigonometric function that returns the arc­
tangent of its argument.

Configuration

ATN(argument)

The argument can be a numeric expression or numeric constant. The
value returned wiJJ be the primary angle (- ; < angle < ;) .

SmartBASIC Reference Gulde 169

Example

]10 Pl= ATN(1) • 4
]20 PRINT Pl, ATN(TAN(.2))
]RUN
3.14159265 .2

In the preceding example, the arctangent of 1 returns the value rr/ 4.
Multiplying this value by 4 returns the value indicated.

In the second part of the PRINT statement, the argument .2 is
returned. Since the ATN formula is the inverse of the TAN function, th'
value returned was the original argument.

CALL

The CALL statement 1s used to execute a machine language

subroutine.

Configuration

CALL expression

expression evaluates to an integer between -65535 and +65535. The
expression is the location of the machine language subroutine.

In SmartBASIC, there are two values which will execute the same
machine language subroutine. There is the positive address and the
negative address. The conversion is as follows:

positive address - 65536 = negative address

Example

CALL 20996

The preceding CALL executes a machine language subroutine at the
given location. This CALL is identical to the CATALOG command.

170 Coleco ADAM User's Handbook

CHRS

The CH R$ function returns the ASCII character for the value given
in the argument.

Configuration

CHR$(argument)

argument is a real number or an integer between O and 255. If the
argument is a real number, its decimal portion will be truncated.

Example

)10 X$ = CHR$(80)
]20 PRINT CHR$(65), X$
]RUN
A P

The ASCII code for A is 65 and the code for P is 80.

CLEAR

CLEAR initializes all variables, arrays, and strings to zero. CLEAR
also initializes all DATA pointers, FOR,NEXT counters, subroutine
pointers, etc.

Configuration

CLEAR

CLEAR can be used anywhere in a program, but should not be used
in a subroutine or FOR,NEXT loop.

SmartBASIC Reference Gulde 171

Example

]10 A=10

]20 PRINT A
]30 CLEAR
]40 PRINT A

]RUN
10

0

Line 30 sets variable A from 10 to 0.

COLOR

The COLOR statement defines the next color to be displayed by the
graphics statements PLOT, HLlN,AT, and VLlN,AT.

Configuration

COLOR = expression

The expression is an integer from Oto 15. The computer can display
a total of 16 different colors. The colors and their associated numbers are
shown below.

0 Black
1 Magenta
2 Dark Blue
3 Dark Red
4 Dark Green
5 Grey
6 Medium Blue
7 Light Blue

8 Yellow
9 Medium Red

10 Grey
11 Pink
12 Light Green
13 Light Yellow
14 Cyan
15 White

172 Coleco ADAM Use(s Handbook

Example

]10 GA
]20 COLOR= 6
]30 PLOT 0,0
]40 END

The preceding program will place a blue square in the upper left hand
corner of the screen.

CONT

CONT resumes program execution at the next instruction.

Configuration

CONT

This command is generally executed following a STOP, END, or
CONTROL-C.

Example

]10 FOR I = 1 TO 5
]20 PRINT I, I A 2

]30 IF I = 3 THEN STOP
]40 NEXT I
]RUN

1 1

2 4
3 9

BREAK IN 30

]CONT

4 16
5 25

In the preceding example, program execution stopped in line 30
when I = 3. Typing in CONT continued program execution.

SmartBASIC Reference Guide 173

cos

The COS function is a trigonometric function that returns the cosine
of its argument.

Configuration

COS(argument)

. .
The argument 1s a numenc expression or numenc constant 1n

radians.

Example

]PRINT COS(3.141592653)
-1

In the preceding example, the cosine of rr is returned.

DATA

The DATA statement contains a list of data items. These data items
are read into the variables specified by the READ statement.

Configuration

DATA item [.item ...]

item can either be a real number, integer, or string. The data items
must be in the same order as they are intended to be read by correspond­
ing READ statements.

If a comma or colon is to be included in the string, the item should be
enclosed in quotes. The foil owing characters cannot be placed as data in a
DATA statement.

RETURN
HOME

"

any arrow
TAB

CONTROL-H
CONTROL-M
Backspace
CONTROL-X

17 4 Coleco ADAM User's Handbook

The preceding characters may be used in a program by executing the
CH R$ function .

The DATA statement can be located anywhere in a program. l t does
not have to precede the READ statement.

Example

]10 DATA "SMITH, JOE", JOHN BROWN

]20 READ N1 $, N2$
]30 PRINT N1$, N2$

]RUN
SMITH, JOE JOHN BROWN

The READ interpreted the first string as SMITH, JOE because it
was enclosed in quotes. The second string is read as JOHN BROWN.

DEFFN

The DEF FN statement allows the user to define a function. This
function can then be used in the same manner as any built-in function.

Configuration

DEF FN name (variable) = expression

name is the name of the function. Like variable names, only the first
two characters are significant. The variable can be any real numeric
variable name. The expression can be a numeric constant or a numeric
equation.

Example

J10 Pl=ATN(1)*4
]20 DEF FNAR(X) = Pl * X A 2

]30 FOR RAD = 1 TO 3
]40 PRINT RAD, FNAR(RAD)

]50 NEXT RAD

]60 END

]RUN
1

2

3

SmartBASIC Reference Guide 1 7 5

3.14159265

12.5663706

28.2743339

In line I 0, Pl is calculated so it can be used in the function definition.
In line 20, the function for the area of a circle is defined . Line 40 then uses
the function by passing the value of the radius to the function . The value
of the area of the circle is then returned and printed by the PRINT
statement.

DEL

DEL deletes the lines given in the argument.

Configuration

DEL a [.b]

a and bare integers greater than or equal to 0. b must be greater than

a. If a is not an existing line number in the program, the next highest line
number will be used . If b is not an existing line number in the program,
the next lowest line number will be used .

The DEL can also be used as a program statement in SmartBASIC.
If the DEL is used as a program statement, the specified lines will be
deleted. However, program execution will halt after the statement has
been executed. The CONT command will not resume program execution.

An example of the use of the DEL command can be found on the
fallowing page.

176 Coleco ADAM User's Handbook

DIM

Example

]10 TEXT
]20 HTAB 12
)30 VTAB 3
)40 PRINT "HELLO"

]50 END
]DEL 30,50
]LIST
10 TEXT
20 HTAB 12

The DIM statement is used to allocate memory space for strings,
arravs, or matrices.

Configuration

a (i[.j] ...) [, b (i[.j] ...)]
)IM a% (i[.i] ...) [.b% (i[,j) ...)]

a$ (i[.j] ...) [,b$ (i[,j] ...)]

a and bare the variables to be dimensioned . i and j are integers.
All arrays, strings, and matrices are predefined with subscripts of I 0.

Above 10, the value in a DIM statement corresponds to the largest
subscript that can be used in that variable. However, there is always a zero
subscript. As a result, to save 100 values in a single dimension array, the
correct DIM statement would be DIM A(99).

The maximum size of strings and arrays depends on the amount of
available memory at the time the DIM statement was executed .

If the DIM statement exceeds the amount of available memory, the
f oHowing error will occur:

?OUT OF MEMORY ERROR IN line

where line is the line of the DIM statement.

SmartBASIC Reference Gulde 177

Example

DIM A$(10,5), C%(2,20)

In the preceding example, 66 string spaces are allocated for A$, and
63 integer variables are defined for C%.

DRAW

The ORA W statement plots a shape on the high-resolution graphics
page.

Configuration

DRAW shapeno [AT X, Y]

shapeno is an integer between O and 255. X and Yare integers for the
position of the shape. X must lie between O and 255. Y must lie between 0
and 191.

If AT X, Y is not given, the shape will be plotted at the last X, Y
position designated .

The color, rotation, and size of the shape must have been previously
defined .

Example

]10 HGR2
]20 HCOLOR = 9
]30 SCALE = 20
]40 FOR I = 0 TO 62 STEP 2
]50 ROT= I
]60 DRAW 1 AT 128,96
]70 NEXT I

Jn the preceding example, line IO initialized the screen for high
resolution graphics. Lines 20 and 30 then define the color and size of the
shape drawn at line 60. The FOR.NEXT loop, lines 40-70, vary the
rotation and redraw the shape.

178 Coleco ADAM User's Handbook

END

The END statement is used to stop program execution.

Configuration

END

The END statement is optional in Smart BASIC. If it is not used, the
program will stop execution at the highest line number.

EXP

Example

999 END

The EXP function returns the value of e raised to the power of the
argument (e = 2. 7 J 828183).

Configuration

EXP (argument)

he argument must be a numeric constant or numeric expression.

Example

PRINT EXP(5)
148.413159

In the preceding example, e5 was returned.

FOR,NEXT

The FOR,NEXT statements are used to execute a sequence of state­
ments a set number of times.

SmartBASIC Reference Gulde 179

Configuration

FOR variable= a to b (STEP cl

NEXT (variablel (,variable ... 1

variable is a real variable in SmartBASIC. The variable is used as a
counter. a, band care numeric expressions or constants. a is the initial
value of the counter and bis the final value. The counter is incremented or
decremented depending on the sign of c. If c is not given, it will be
assumed as I .

The program lines following the FOR statement will be executed
until the NEXT statement is encountered. At this point, the counter is
incremented (assuming positive STEP value) by the STEP value.

The value for the counter is then compared with its final value b. As
long as the counter's value does not exceed the final value, the program
will branch back to the statement fallowing the FOR statement. This
entire process will then be repeated.

When the counter's value exceeds the specified final value (b), the
statement following the NEXT statement will be executed. This will exit
the FOR.NEXT loop.

One FOR.NEXT loop may be placed within another FOR,NEXT
loop. This is known as nesting or nested loops. When FOR,NEXT loops
are nested, each FOR.NEXT loop must use a different variable name for
the counter. Also, the NEXT statement for the inside loop must appear
before the NEXT statement for the outside loop. However, if both loops
end at the same point, a single NEXT statement may be used to end these.
Be certain that the variable for the inside loop appears before the variable
for the outside loop. A NEXT statement such as the following:

NEXT J,l

would be interpreted as follows:

NEXTJ
NEXT l

180 Coleco ADAM User's Handbook

Example

]10 FOR X = 1 TO -2 STEP -1
]20 PRINT X
]30 NEXT X

]40 END
]RUN
1

0
-1

-2

In the preceding example, the STEP value is -I so the counter is
decremented until its value is -2.

FRE

The FRE function returns the number of free bytes in memory.

Configuration

FAE (argument)

argument can be any legal expression. It makes no difference what
the argument is.

When FRE is used, a housekeeping will be performed before the
function returns the number of free bytes. Housekeeping is a process
where BASIC gathers all useful data by freeing any memory which was
once used for strings, but which is currently unused. Memory for strings
becomes unused when the string's length changes.

Example

]10 A= FAE (0)
)20 PRINT "NUMBER OF FREE BYTES IS";A
]30 END

]RUN
NUMBER OF FREE BYTES IS 26004

SmortBASIC Reference Gulde 1 81

GET

The GET statement inputs a single character from the keyboard. The
character is not displayed on the screen.

Configuration

GET variable

variable can be any legal SmartBASlC variable.
Although variable can be any variable, it is to the user's advantage to

use a string variable and convert it to a numeric variable with the VAL
function . If a numeric variable was used with GET, any non-numeric
character entered will cause a syntax error and halt program execution.

Example

]10 GET A$

]20 PRINT A$;

]30 IF A$= CHR$(3) THEN END
]40 GOTO 10

The preceding example demonstrates the use of the GET statement.
This program accepts a single character from the keyboard and displays
the character on the screen. The GOTO statement at line 40 causes the
GET statement to be repeated. The conditional statement at line 30
causes the program to end when the CONTROL-C combination is

entered.

GOSUB,RETURN

The GOS U B, RETURN statements are used to branch to a subrou­
tine and then return from it.

182 Coleco ADAM User's Handbook

Configuration

GOSUB line

RETURN

line is the first line of a subroutine. A subroutine is called by the
GOSU B statement. When the RETURN statement is encountered within
that subroutine, program control will branch back to the statement
following the GOSUB statement just executed .

Subroutines may appear at any point within the program. However,
it is good programming practice to group all subroutines at the end of the
program, and to include an END statement to separate the main program
from the subroutines.

Example

]10 X=0
] 20 FOR I = 1 TO 3
]30 X = X+1

}40 GOSUB 70

]50 NEXT I
]60 END
]70 PRINT X,
]80 Y = X*X

]90 PRINTY
)100 RETURN

]RUN
1 1
2 4

3 9

When the program reaches line 40, the GOS U B will be executed. The
program branches to line 70. When the RETURN in line I 00 is reached ,
program executionjumps back to line 50. This process continues until the

FOR counter reaches 3.

SmartBASIC Reference Guide 183

GOTO

The GOTO statement branches program control to another program
line.

Configuration

GOTO line

line is the line number of the statement to be branched to.

GR

Example

]10 PRINT "FIRST"
]20 GOTO 40
]30 PRINT "MIDDLE"
]40 PRINT "LAST"

]50 END
]RUN
FIRST
LAST

The GR statement sets and clears the low resolution screen mode
(40x40 with 4 lines of text at the bottom of the screen).

Configuration

GR

This statement should be executed before the graphics statements
PLOT, HLIN, AT, and VLIN,AT are used.

When the GR statement is executed, the color is automatically set to
0 (BLACK).

1-84 Coleco ADAM User's Handbook

Example

]10 GR
]20 COLOR = 15
]30 PLOT 19, 23
]40 END

The preceding example should put a white square on the screen. If
line IO was omitted, the PLOT command in line 30 would have a null
effect, because the low-resolution mode was not set.

If you wish to return to the normal mode, you can do so by executing
the TEXT statement.

HCOLOR

The HCOLOR statement defines the next color to be displayed by
the graphics statements, HPLOT and DRAW. HCOLOR is used in the
high resolution graphics mode.

Configuration

HCOLOR = number

number is a numeric expression or numeric constant that evaluates
to a real number or integer between O and 15. Values outside this range
will produce an error. The colors and their associated numbers are shown
below.

0 - Black

1 - Green
2 - Violet
3-White
4 - Black
5 - Orange
6 - Blue
7 -White

8 - Brown
9 - Dark Blue

10 - Grey
11 - Pink
12 - Dark Green
13 - Yellow
14 - Aqua
15 - Magenta

SmartBASIC Reference Gulde 185

H PLOT and ORA W will all output lines in the color indicated by
HCOLOR until a subsequent HCOLOR statement is executed.

HGR

The HG R statement sets and clears the high-resolution graphics
mode (256 x 160), with 4 lines of text at the bottom of the screen.

Configuration

HGR

Output to the four lines of text may be accomplished by using the
standard PRINT command.

Exam~le

]HGR 1
When the preceding example is executed, the high-resolution g1

phics mode will be set and the screen will be cleared to black. There will be
four lines of text at the bottom. The high resolution color will automati­

cally be set to O (black).

HGR2

HGR2 sets the screen to the high resolution graphics mode without

the text lines at the bottom of the display (256 x 192).

Configuration

HGR2

Except that no text display is supported, HGR2 operates identically to

HGR.

186 Coleco ADAM User's Handbook

HIMEM

Example

J10 HGR2
}20 HCOLOR = 9

]30 HPLOT 128,0 TO 211 ,144

}40 HPLOT TO 45,144 TO 128,0

]50 HPLOT 45,48 TO 211,48

]60 HPLOT TO 128,191 TO 45,48

The HIM EM statement defines the address of the highest memory
location available to a BASIC program.

Configuration

HIMEM: number

number is a numeric constant or numeric expression. The value of
,lumber should indicate the highest available memory address. This value
must lie between - 65535 and 65535.

If the HIME M: is set lower than LOME M or set so low that there is
not enough room for the program to run, an out of memory error will
occur.

The value of HIMEM is reset by the commands NEW, LOMEN,
CLEAR and RUN. Therefore, HIM EN should be used in programs.

The HIM EM statement is generally used to reserve memory for a
machine language subroutine called by the BASIC program. The
HIMEM statement keeps BASIC variable and array storage separate
from the machine language subroutine .

Example

HIMEM: 33024

The preceding example sets high memory to memory address 33024.
SmartBASIC will now only use memory up to this address.

SmartBASIC Reference Gulde 187

HLIN

H LIN 1s used in the low resolution graphics mode to draw a
horizontal line on the screen.

Configuration

HLIN column 1, column 2 AT row

column J, column 2, and row can be either numeric constants or
numeric expressions. column J and column 2 must lie in the range of Oto
39. Also, the value of column J must be less than or equal to column 2.
Row must lie in the range of Oto 39.

If an incorrect value is used for column J, column 2, or row, the
fallowing error message will be displayed:

?ILLEGAL QUANTITY ERROR

If H LIN is executed in the text mode, a null result is achieved.

Example

]10 GR
]20 COLOR= 3
]30 HLIN 0, 39 AT 20
]40 END

The preceding example will draw a dark red line across the screen at

row 20.

HOME

The HOME statement clears the screen and places the cursor in the
upper left hand corner of the text screen.

Configuration

HOME

188 Coleco ADAM User's Handbook

If HOME is executed while a graphics plus text format is d isplayed ,
only the text window is cleared.

Example

]HOME

HPLOT

The HPLOTstatement can be used to place a dot or draw a line on
the high resolution graphics screen. The color of the dot must have been
previously defined by the HCOLOR statement.

Configuration

HPLOT column 1, row 1 [TO column 2, row 2 ...]
HPLOT TO column, row

column, row, column 1, column 2, row 1, and row 2 are numeric
constants or numeric expressions. column, column 1, and column 2 must
lie between O and 255. The row, row 1, and row 2 must lie between O and
191.

If the HP LOT is used as shown in the first configuration without the
optional (TO column 2, row 2), a dot will be plotted. The optional TO will
connect the two dots. If the column 1 and row 1 preceding the TO are
omitted, the line will be drawn from the previous point plotted to the
point indicated by column 2, row 2.

Example

]10 HGR
]20 HCOLOR = 3
)30 HPLOT 0,0

]40 HPLOT TO 0,50 TO 50,50
)50 HPLOT TO 50,0 TO 0,0

The preceding example will draw a square in the upper left hand
corner of the screen.

smartBASIC Reference Gulde 1 ts~

HTAB

The HTAB statement positions the cursor at the location specified by
its argument.

Configuration

HTAB argument

argument is a numeric constant or numeric expression. The argu­

ment must be between 0 and 255.
The cursor will be moved to the position specified by the argument.

HTAB moves the cursor without erasing any displayed characters. If
argument is greater than the length of a physical line (31 characters), the
subsequent lines will be used until the correct position is attained.

Example

] 10 PR I NT "1234567890"
]20 HTAB 3 : PRINT 3;
)30 HTAB 5: PRINT 5;
)40 HTAB 9 : PRINT 9

]RUN
1234567890

3 5 9

In the preceding example, line 20 places the cursor at position 3 and
displays a 3. In line 30, the cursor is moved to position 5. The PRINT
statement displays a 5. In line 40, HTAB moves the cursor to position 9,
and the PRINT statement displays a 9.

IF,THEN

The IF, TH EN statement sets up a condition which will influence the

program flow.

190 Coleco ADAM Use(s Handbook

Configuration

IF expression THEN statement [:statement ...]

expression is a conditional expression. statement can be any BASIC
statement.

If the expression is evaluated as true, the TH EN portion of the
statement will be executed.

In Smart BASIC, if the expression evaluates as true, the statement
following THEN will be executed. If the expression evaluates as false, the
statement in the next program line will be executed.

For example, consider the following statement.

IF X=15 THEN PRINT "TRUE":PRINT X

If the variable X equals 15, the following would be displayed:

TRUE
15

If X does not equal 15, TRUE would not be displayed, nor would the
value of X.

If only a number is placed after THEN, a GOTO that line number is
executed when the statement is true.

10 IFA=15THEN90

or

10 IF A= 15 THEN GOTO 90

The I NT function returns the integer value of the specified argument.

Configuration

INT (argument)

argument is a numeric constant or numeric expression.
The value returned will always be less than or equal to the original

value.

-
--------------~S~m~a~rt~BAS~IC~R~ef~e~re~n=c~e_G_u_ld_e_,9, ~

INVERSE

Example

PRINT INT (1 .7), INT (-1.7)
1 -2

The INVERSE statement turns on the INVERSE (reverse) video.
Following the execution of the INVERSE statement, any characters
displayed by the computer will be in inverse (i .e. characters will bP
displayed as black characters on a white background.)

Configuration

INVERSE

The INVERSE mode works by altering the standard ASCII coo
only in the display. Therefore, the inverse video characters can only be
saved on the Digital Data Packs if the ASCH codes for them are written
to the drive. The printer cannot support inverse video.

The INVERSE statement can be turned off by the NORMAL state­
ment.

Example

] INVERSE
] PRINT"++"

++

Note that the PRINT statement as well as the output will appear in
reverse video on the display.

INPUT

The IN PUT statement accepts data entry from the keyboard or

another input device while the program is being executed.

192 Coleco ADAM User's Handbook

Configuration

INPUT ["message";] variable [,variable]

message is a string used as a prompt. variable can be any valid
BASIC variable.

When an INPUT statement is executed, program execution will stop
temporarily. If a prompt was includep, the prompt will be displayed. A
question mark will be displayed if there is no prompt.

After the INPUT statement has been executed, the user may enter
the desired data at the keyboard. That data is assigned to the variable(s)
listed in the INPUT statement. The number of data items entered must
equal the number of variables listed. Also, the type of data entered must
agree with the type specified in variable. The data items must be delimited
by commas when input. Bec~use the comma is used as delimiter, if a
comma is to be entered in a string, quotes must be placed around the
string data.

LEFTS

Example

]10 INPUT "ENTER A NUMBER "; A

)20 PRINT "THE NUMBER IS "; A
]30 END
]RUN

ENTER A NUMBER 4.5~--user's response

THE NUMBER IS 4.5

The LEFT$ function returns the number of characters specified in
the second expression of the argument to the leftmost of the string
specified in the first part of the argument.

Conf lguratlon

LEFT$ (a$,x)

SmartBASIC Reference Guide 1 93

a$ is a string constant searched by the function. xis the number of
characters to be returned .

Example

)10 A$= "ABCDEFG"
)20 PRINT LEFT$ (A$, 3)
)30 END
]RUN

ABC

The preceding LEFT$ function returned the 3 leftmost characters in
A$.

If the value of the numeric argument exceeds the length of the string
argument, the entire string value will be returned. If the value of the
numeric argument is less than one or greater than 255, the following error
message will be displayed:

?Illegal Quantity Error

LEN

The LEN function returns the number of characters in a string.

Configuration

LEN (a$)

a$ is a string constant.

Example

PRINT LEN ("ADAM")

4

194 Coleco ADAM User's Handbook

LET

The LET statement is an optional assignment statement. An assign­
ment statement determines the value of an expression and then assigns
that result to the variable named in the assignment statement.

Configuration

LET variable = expression

variable must be of the same data type as the expression. For exam­
ple, if variable is a string, expression must also be a string. If variable is an
integer or real number, then expression must also be numeric.

LIST

Example

)10 LET C = 1+A
)20 L = c•2

The LIST command is used to list the program stored in memory on
the video display or other device.

Configuration

LIST a [{.:.}[b]]

or

LIST [[a]{.:.}]b

a and bare integers greater than or equal to 0. If a is greater than b,
no lines will be listed.

If a is not a line number in the program, the next highest line number
will be used . If bis not'a line number in the program, the next lowest line
number will be used.

LIST can be frozen by CONTROi.rs. Pressing any other key will
resume LIST. The listing may be stopped by pressing CONTROi.re ..

LOAD

SmartBASIC Reference Gulde 195

Example

)10 PRINT "My"
)20 PRINT "name"
}30 PRINT "is"
]40 PRINT" Adam"
}LIST 10

10 PRINT "My"
}LIST 20,40

20 PRINT "name"

30 PRINT "is"
40 PRINT "Adam"

The LOAD command is used to load a program from a storage
device to the· computer.

Configuration

LOAD filename [.D drive]*

filename is the name of the program. drive is the number of the
Digital Data Drive that the file is in.

LOAD need only be entered with the program name, and the
RETURN key pressed. If the indicated filename is not present on the
specified Data Drive, the File Not Found error will occur.

Example

]LOAD PROGRAM

• WARNING: If an attempt is made to access a drive which is not present in your system, the
system 1/0 will be disabled. Reset the computer to recover.

196 Coleco ADAM User's Handbook

LOG

0.

The LOG function returns the natural log of the argument.

Configuration

LOG (argument)

argument is a numeric constant or numeric expression greater than

The natural log is undefined for negative numbers.

Example

]PRINT LOG(25)
3.21887582

The LOMEM statement defines the address of the lowest memory
location available for BASIC.

Configuration

LOMEM: number

number is a numeric constant or numeric expression. The value of
number should be the address of the lowest memory available. This value
must lie between -65535 to 65535.

LOMEM cannot beset lower than 27294, nor can it be set lower than
its current value. LOMEM can only be increased.

LOMEM will be reset by the NEW or DEL commands or by adding
or changing a line.

Example

LOMEN:28000

SmartBASIC Reference Gulde 197

MIDS

The MID$ function returns the portion of a string specified by its
argument.

Configuration

M1D$(a$, b[.c])

a$ is a string constant. b and c are numeric constants or numeric
expressions with a value between O and 255. bis the first character in a$
being returned. c is the number of characters in a$ being returned. If c is
not included, all characters to the right of the position given in b will be
returned.

Example

]10 N$ = "COMPUTER"

]20 PRINT MID$(N$, 4, 3)
]30 END

]RUN
PUT

In the preceding example, the fourth position in the string N$ is the
starting position. The 3 indicates 3 characters.

If the value of the numeric argument exceeds the length of the string
argument, the entire string value will be returned. If the value of the
numeric argument is less than one or greater than 255, the fallowing error
message will be displayed.

?Illegal Quantity Error

NEW

The NEW command deletes the program in memory and clears all
variables.

198 Coleco ADAM User's Handbook

Configuration

NEW

The NEW command is generally used to free memory space before a
new program is entered.

NORMAL

Example

]10 TEXT
]20 END
]LIST

10 TEXT
20 END

]NEW

]LIST

The NORMAL statement turns off the INVERSE mode.

Configuration

NORMAL

The NORMAL statement sets the video output mode to white
characters on a black background.

NOT

Example

]NORMAL

The NOT function logically compliments the value given in the
argument.

SmortBASIC Reference Gulde 199

Configuration

NOT argument

argument is a numeric constant or numeric expression. If the argu­
ment evaluates to true (non-zero), false (zero) will be returned. If the
argument evaluates to false (zero), true (one) will be returned .

NOT 1 = 0
NOTO= 1

Example

]10 A= 2

]20 IF NOT (A= 1) THEN PRINT "A DOES NOT EQUAL ONE"
]30 END
]RUN

A DOES NOT EQUAL ONE

NOTRACE

ON

The NOTRACE command turns off the TRACE command.

Configuration

NOTRACE

The NOTRACE command may be used as a program statement.

Example

]NOTRACE

The ON statement is used in conjunction with GOTO and GOSU B.

The statements are used to branch program control to one of several

200 Coleco ADAM User's Handbook

program lines depending on the value appearing after ON.

Configuration

ON exp GOTO line [. line ...]
ON exp GOSUB line [.line ...]

exp can be any numeric constant or numeric expression. line is the
line number the program is to branch to.

The value of exp controls which line is to be branched to. For
instance, if exp evaluates to 1, program control will branch to the line
number given in the first line. If exp evaluates to 2, program control will
branch to the second line, etc ...

If the ON.GOS U B statement is being used, the line number specified
in line can be that of a subroutine. In other words, a RETURN statement
eventually can be executed to return program control.

If exp evaluates to zero or to a number greater than the number of
lines specified after GOTO or GOSUB, the program will continue with
the next executable statement.

Example

]10 INPUT " ENTER AN INTEGER FROM 1 TO 4 " ;I
]20 ON I GOTO 60,80,100,120
]30 PRINT

]40 INPUT "PLEASE ENTER AN INTEGER FROM 1 TO 4 "; I
]50 GOTO 20
]60 PRINT "YOU ENTERED A ONE"
]70 GOTO 130
]80 PRINT "YOU ENTERED A TWO"
]90 GOTO 130

]100 PRINT "YOU ENTERED A THREE"
]110 GOTO 130

]120 PRINT "YOU ENTERED A FOUR"
]130 END

SmartBASIC Reference Guide 201

In the preceding example, line 10 prompts the user to enter a number
between one and four. In line 20, an ON,GOTO will branch control to a
different line depending on the value of I. If l is one, program execution
will branch to 60. lf I is two, program execution will branch to 80, etc. If
zero or a number greater than four was entered, program execution will
continue to line 30.

ONERR GOTO

The ON ERR statement allows errors to be trapped. The statement
then transfers program control to an error handling routine at the indi­
cated line number.

Configuration

ONERR GOTO line

line is the first line of the error handling routine. ON ERR GOTu
should be executed before the error has occurred .

When SmartBASIC executes a program, it executes the program
line by line. If an error occurs during program execution, SmartBASlC
will check to see if an ON ERR GOTO statement has been executed. If no

ONERR GOTO statement had been executed, SmartBASlC will halt
program execution and display the error. Otherwise, the program will
branch to the line indicated in the ONERR GOTO statement.

The RESUME command can be used to return the program to the

beginning of the statement where the error occurred .

OR

OR is a logical operator. This reserved word is generally used in

conjunction with the IF,THEN statement.

Configuration

expression 1 OR expression 2

202 Coleco ADAM User's Handbook

expression 1 and expression 2 are Boolean expressions. If the expres­
sion is numeric (non-zero), it will be evaluated to true. A zero is treated as
false. A truth table for OR is illustrated below.

X y XORY

true true true

true false true

false true true

false false false

In SmartBASIC, a true is represented by a 1 and false by a 0.

Example

]10 A= 3

]20 B = 5
]30 IF (B < A) OR (B = 5) THEN 50

)40 END
)50 PRINT "EITHER B IS LESS THAN A"
)60 PRINT "OR B IS EQUAL TO S"

)70 END

]RUN
EITHER BIS LESS THAN A

OR B IS EQUAL TO 5

In the preceding example, Bis not less than A, but Bis equal to 5.
Therefore, the whole OR expression is true, and the program branches to
line 50.

PDL

The PDL function returns the value corresponding to a specific
game controller manipulation.

SmartBASIC Reference Guide 203

Conf lguratlon

POL (argument)

arg ument is a numeric constant or numeric expression. The value of

argument must lie between O and 15. The value of argument corresponds
to the following manipulations.

icontroller
number argument value returned

#2 0 Pushing the joystick up causes the variable that
represents vertical position to decrease; pushing
down increases the value of the variable. The var-

#1 1 iable will always lie in the range 0-255.

Pushing the joystick to the right causes the
#2 2 variable that represents horizontal position to

increase; pushing down decreases the value of

#1 3 the variable. The variable will always lie in the
range 0-255.

Returns value corresponding to the current joy-
#2 4 stick position.

UP = 1 DOWN-RIGHT= 6
RIGHT= 2 DOWNLEFT = 12
DOWN =4 UP-LEFT= 9

#1 5 LEFT = 8 CENTER = 0
UP-RIGHT = 3

#2 6 Left button

#1 7 Pressed = 1 Released = O

#2 8 Right button

#1 9 Pressed = 1 Released = 0

#2 10 ASCII coded value of key pressed on numeric

#1 11 keypad; no key pressed = 0

#2 12 Numeric value of key pressed on keypad.,, . ,,= 10

#1 13 "#" = 11 no key pressed = 15

14

15
Not yet implemented

204 Coleco ADAM User's Handbook

Example

)10 VTAB 1
)20 FOR I= 0 TO 15
)30 PRINT l;TAB(4};PDL(I};
)40 NEXT l:GOTO 10

The preceding program displays the 16 different values returned by
the POL function. By manupulating either hand controller, the values
returned by POL will change.

PEEK

The PEEK function returns the contents of the memory address
given in the argument.

Configuration

PEEK (argument)

I argument is a numeric constant or numeric expression between
b5535 and 65535.

The decimal integer returned by the function will lie between O and
255.

Example

]PRINT PEEK(64000)

203

The preceding example returns the contents of location 64000.

PLOT

The PLOT statement plots a dot on the low resolution graphics
screen. The color of the dot must have been previously defined by the
COLOR statement.

SmartBASIC Reference Gulde 205

Configuration

PLOT column, row

column and row must be numeric constants or numeric expressions.
Both column and row must lie between O and 39.

PLOT occurs at the position specified. For example PLOT 3, 5
would place a dot at row five and column three. The origin (0,0) is located
in the upper left hand corner of the screen. If a PLOT statement is
executed when either the text mode or the high resolution mode is active,
the screen is not affected.

Example

]10 GR
]20 COLOR= 3
]30 FOR I = 0 TO 39

]40 PLOT 1,1
]50 NEXT I

]60 END

The preceding example will draw a diagonal line across the screen .

•

206 Coleco ADAM User's Handbook

POKE

The POKE statement stores one byte of information in the memory
location specified.

Configuration

POKE address, value

address and value are numeric constants or numeric expressions.
address lies between -65535 and 65535. value must lie between O and 255.

The POKE statement places the indicated value at the specified
memory address. A POKE has no effect if the address is in ROM . If a
POKE is not used carefully, it can disrupt the ADAM ·s execution.

Example

)10 PRINT"PEEK(32000)
)20 POKE 32000,37
)30 PRINT PEEK(32000)
)40 POKE 32000, 158
)50 PRINT PEEK(32000)
)60 END

In the preceding example, line IO first displays the current contents
of memory location 32000. The value 37 is then POKE'd into memory on
line 20. Line 30 displays the value at memory location 32000. The value
158 is then POKE'd into memory and displayed in lines 40 and 50.

POP

The POP statement causes a program to ignore the GOS U B or
ON,GOSUB statement that was executed last.

Configuration

POP

SmartBASIC Reference Gulde 207

In effect, a GOSUB or ON,GOSUB statement is converted to a
GOTO or ON,GOTO statement when POP is executed. The program
"forgets" that it is in a subroutine. As a result, when a POP statement is
executed, the next RETURN statement branches the program control to
the line after the GOS U B statement before the previous GOS U B state­
ment. In other words, the program "forgets" where the subroutine was
called from, so it returns to a previous GOS U B statement.

A POP statement is used, in general, to exit a subroutine.

]10 X = 5

)20 Y = 10

Example

)30 GOSUB 100

)40 END
)100 PRINT X

)110 IF X > 0 THEN POP:GOTO 130
)120 RETURN

]130 PRINTY
]140 END

]RUN

5

10

The previous example contains a program that uses a POP statement

to exit a subroutine. At line 10, Xis assigned the value 5. At line 20, Y is

assigned the value 10. At line 30, the subroutine at line 100 is called.

At line 100, the value of X is displayed . Line 110 is an IF,THEN

statement that tests the condition X > 0. Since the value of X is greater

than zero, the condition is true. As a result, the POP statement is exe­

cuted, and the program control branches to line 130. At line 130, the value

of Y is displayed.
Because the POP statement was executed, the program no longer

remembers the subroutine. If a RETURN statement were to be executed

in line 140, the program would not return to the statement following line

30. In fact, a RETURN statement in line 140 would cause an error, since

the program would not know where to branch.

208 Coleco ADAM User's Handbook

If a GOS U B had been executed that transfered program control to
line 10, and if a RETURN statement was present in line 140, the
RETURN in 140 would transfer program control back to the statement
following the GOSUB that called line 10.

A POP statement can also be used to make the program ignore the
previous FOR statement. When a POP statement is executed within a
FOR,NEXT loop, the loop will not be repeated. However, an error
occurs if a NEXT statement is executed for that loop.

POS

The POS function returns the current horizontal position of the
cursor.

Configuration

POS (argument)

argument can be any legal constant or expression.
The number returned will be an integer from O to 39. The leftmost

position is 0.

Example

]HTAB 9: PRINT POS(0)
8

]PRINT TAB(9); POS(0)
8

]PRINT SPC(9); POS(0)

9

In the previous example, the HTAB and TAB function count the
leftmost position as I. The SPC and POS function treat the leftmost
position as 0.

SmartBASIC Reference Gulde 209

PRINT

PRINT is used to display information to the screen or to another
output device .

Configuration

PRINT [expression] [: ... [expression] ...]

expression can be any valid numeric or string constant or expression.
expression can include string and numeric variables, as well as string and
numeric constants. Each variable name or constant must be separated by
either a comma or a semicolon. When a comma separates the items in a
PRINT statement, the display is divided into two display positions in
SmartBASIC. These begin in columns I and 17.

A PR I NT statement can end with a comma, semicolon, or with no
punctuation at all. A PRINT statement that ends with a semicolon causes
any subsequent PRINT statement output to appear at the next position

on the same row of output.
When a PRINT statement ends with a comma, the next PRINT

statement output will occur at the next PRINT display position on the

same row of output.
When a PRINT statement includes no ending punctuation, the next

line of output will automatically occur on the next display line. A PRINT
statement always clears the screen from the last displayed character to the

end of the line.

PR#

PR# specifies the peripheral which will be providing subsequent

output for the ADAM.

Conflgu ration

PR# argument

argument is a numeric constant or numeric expression which speci­

fies the peripheral. The value of the argument must lie between O and 7.

210 Coleco ADAM User's Handbook

argument peripheral

0 screen
1 printer

2-7 not yet supported

WARNING: If a PR#8 is executed, the system 1/0 will be disabled.

READ

A READ statement is used to assign values to variables. The values
are taken individually from DATA statements in the order they appear in
the program.

Configuration

READ a [•
h

]
a$,b$...

Data items are assigned to variables in the order in which they
appear in the program unless a RESTORE statement has been executed.

The type of variable in the READ statement must correspond to the
type of data in the corresponding DATA statement. A numeric variable
can only be assigned a numeric value. However, a string variable can
accept any type of character or none at all.

A program must include at least as many data items as the number of
variables in its READ statements unless a RESTORE statement is exe­
cuted.

Example

)20 READ X,X$
)30 PRINT X$,X
]40 END

)50 DATA 12, JONES

]RUN

JONES 12

SmartBASIC Reference Guide 211

The preceding example contains a program that has a READ state­
ment. At line 20, the variables X and X$ are assigned the values from the
DATA statement at line 50. At line 30, the values of the two variables are
displayed.

A READ statement can accept data from a DATA statement that
appears anywhere in a program. A DATA statement does not have to
precede the READ statement in order to be effective.

REM

A REM statement is used to insert comments in a program. The
REM statement is ignored by the BASIC interpreter.

Configuration

REM remarks

Example

REM INPUT ROUTINE

Any statements that follow a REM statement, on the same line, are
also ignored by the computer. As a result, a REM statement is generally
used on its own line or at the end of a multiple statement line.

RESTORE

A RESTORE statement is used to move the DATA statement point­
er to the beginning of the DATA item list.

Configuration

RESTORE

The data in a program is read in order, starting with the first DATA
statement item. In order to reread the data, a RESTORE statement is

necessary.

212 Coleco ADAM User's Handbook

When a RESTORE statement is executed, the next READ state­
ment will assign to its first variable the first data value that appears in the
program.

Example

)10 READ A1,B1,C1,X1$
)20 PRINT A 1,B1 ,C1
]30 PRINT X1$
)40 RESTORE
)50 PRINT
)60 READ A2,B2,C2,X2$
]70 PRINT A2,B2,C2
]80 PRINT X2$
)90 READ X3$
)100 PRINT X3$
)110 DATA 32,-102,2.12,RECTOR,SPALL

In the preceding example, data is read into the variables indicated in
line 10. The data is then displayed in lines 20 and 30. The RESTORE
statement in line 40 allows the data items read in line 10 to be read again.

RESUME

RESUME is used in SmartBASIC to resume program execution
after an ON ERR GOTO statement has branched program control to an
error handling routine.

Configuration

RESUME

If RESUME is executed without an error having previously
occurred, the program will stop, the system will hang, or an error message
will result.

SmartBASIC Reference Gulde 213

RETURN

A RETURN statement is used to branch a program back to the line
where the last subroutine was called .

Configuration

RETURN

A subroutine is called with a GOSUB or ON,GOSUB statement.
When the subroutine has been completed, a RETURN statement causes
program control to return to the statement following the most recently
executed GOSUB or ON,GOSUB statement.

RIGHT$

Example

RETURN

The RIG HT$ statement is used to return the rightmost charac­

ters of a string.

Configuration

b$ = RIGHT$ (a$,c)

The RIG HT$ function returns a string value. The first argument is a
string constant or a string variable. The second argument is a numeric

value. The string returned consists of the number of characters specified

by the numeric argument. These cha racters are the rightmost characters

in the string argument.

214 Coleco ADAM User's Handbook

Example

]10 A$= "WILLIAM JONES"
]20 PRINT A$
]30 PRINT RIGHT$(A$,5)
]RUN
WILLIAM JONES
JONES

The preceding example contains a program that uses a RIG HT$
statement. At line 10, the string variable A$ is assigned the value "WIL­
LIAM JONES". At line 20, the value of A$ is printed . At line 30, the
rightmost 5 characters of the value of A$ are displayed.

If the value of the numeric argument exceed s the length of the string
argument, the entire string value is returned . If the value of the numeric
argument is less than one or greater than 255, the following error message
will be displayed:

?Illegal Quantity Error

RND

The RND function is used to generate "random" numbers .

Cont iguratlon

X = AND (a)

In Smart BASIC, RN D will return a random number greater than or
equal to zero and less than one. If RN D's argument (a) is positive , a new

random number will be generated each time RN D is executed.
RND can also be used with a negative argument. The same random

number will be returned when RND is executed with the same negative
value for a.

If a = 0, RND will return the most recently generated random
number.

If the same negative argument is repeated followed by RND state-

SmartBASIC Reference Guide 215

ments with positive arguments, the same series of random numbers will
be generated. This is illustrated in the following example.

ROT=

Example

]100 PRINT RND(-1)

]200 PRINT RND(3)
]300 PRINT RND(.22)

]400 PRINT RND(.33)

]500 PRINT RND(-1)
]600 PRINT RND(.99)
]700 PRINT RND(2.7)

]800 PRINT RND(.77)

]RUN

.763671875

.0966934073

.805508261

.897540095

.763671875

.0966934073

.805508261

.897540095

ROT= sets the amount of rotation for a shape which is to be plotted

with ORA W or erased with XDRA W.

Configuration

ROT=x

xcan range from 0 through 255. The shape will be rotated 90 degrees

clockwise for every increment of 16 in the value of x. For example, ROT=0
causes the shape to be drawn in the same position in which it was
originally defined. ROT= 16 causes the shape to be rotated 90° clockwise.
ROT=32 causes the shape to be drawn upside down. ROT=64 causes the

216 Coleco ADAM User's Handbook

shape to be drawn in its original position.
The number of actual different rotations is limited by the SCALE=

setting. Lower SCALE= settings will have fewer noticeable rotations.
When SCALE= is set to one, there are only eight noticeable ROT= values.
They are 0,8, 16,24,32,40,48,56 and numbers greater than 63 which would
use the M OD64 equivalent. If a number other than 0,8, 16,24,32,40,48 , or
56 is used, the shape will generally be drawn with the lower corresponding
ROT= value.

Example

ROT=32

The ROT statement given in our example would cause a shape
plotted with DRAW to be rotated 180 degrees.

RUN

RUN is used to execute the BASIC program currently stored in
memory. Prior to program execution, all variables, pointers, and
stacks will be cleared .

Configuration

RUN [/inenumber]

or

RUN filename

If linenumber is specified, execution will begin at the specified line. If
no linenumber is specified, execution will begin with the lowest line
number. If a non-existent linenumber is specified, one of the following
error messages will result:

?Undefined Statement Error

When used in the second configuration, RUN looks for the file
specified by filename, tries to load it, and if successful, executes it. If the
specified file is not on the Digitial Data Pack, an error message is printed.

SmartBASIC Reference Gulde 217

SAVE

The SA VE command is used to store a program on a Digital Data
Pack.

Configuration

SAVE filename [,Ox]

SAVE need only be entered with the program's filename. If the
indicated filename duplicates that of a file already on the Digital Data
Pack, the contents of the original program will be put into a backup file
with the same name, and the original program will be replaced with the
new program.

SCALE

Example

]10 PRINT "HI THERE": REM EXAMPLE PROGRAM

]SAVE PROG

]CATALOG
Volume: FIRST DIR

A 1 PROG

251 Blocks Free

]SAVE PROG

]CATALOG
Volume: FIRST DIR

A 1 PROG ...,. __ new program

a 1 PROG --- backup

250 Blocks Free

The SCALE command gives the size at which a shape is to be
displayed. The SCALE command takes the following form.

Configuration

SCALE= x

218 Coleco ADAM User's Handbook

xis a numeric argument with a range of 1-255. This command should
be executed before ORA Wing any shape to the screen. If x = 10 then the
ADAM will draw the shape ten times larger than if x = I .

Example

]10 HGR2
]20 HCOLOR = 9
]30 FOR I= 1 TO 32
]40 SCALE= I
]50- ROT= I
]60 DRAW 1 AT 128,96
]70 NEXT I

In the preceding example, line 10 initialized the screen so that
graphics could be drawn. Lines 20 defined a color for the shape. Lines
30-70 set up a loop which rotated and enlarged the shape.

SCRN

SCRN is used in the low resolution graphics mode to return the color
code of the point specified as its argument.

Configuration

SCAN (x,y)

xand ycan range from Oto 39. If xis in the range from Oto 39, SCRN
will return the color code of the point whose column is indicated by xand
whose row is indicated by y.

SmartBASIC Reference Guide 219

Example

]10 GR_
]20 COLOR= 2

]30 PLOT 20, 10

]40 COLOR= 6

]50 PLOT 30,35
]60 PRINT SCRN(20,10). SCRN(30,35). SCRN(10,0)

]70 END

In the preceding example, line IO initializes the low resolution
screen. Lines 20 to 50 plot two different colored dots on the screen. Line
60 displays the color value of the corresponding dots. Notice that the
value of SCRN(10,0) is zero. There is a black dot at that position.

SGN

The SG N function returns a + I if its argument is positive, a - I if
negative, and a O if zero .

SIN

Configuration

SGN (a)

Example

]100 A= 100

]200 X = SGN(A)

]300 PRINT X

]400 END

]RUN

1

The SIN function returns the sine of the angle specified as its argu­
ment. The argument will be assumed in radians.

220 Coleco ADAM User's Handbook

SPC

Configuration

X = SIN (a)

Example

]PRINT SIN (3.1415927/2)
1

The SPC statement is used to insert spaces in a PRINT statement.

Configuration

SPC (a)

The argument of the SPC statement specifies the number of blank
spaces that will occur.

Example

)10 X = 4
)20 Y = 6

)30 PRINT X;SPC(5);Y
)40 END
]RUN

4 6

In the previous example, the values of the variables X and Y are
printed at line 30. The SPC statement within the PRINT statement causes
the output to be separated by 5 extra spaces.

SPEED

The SPEED statement sets the speed at which characters are output.

SmartBASIC Reference Gulde 221

Configuration

SPEED= x

xcan range from Oto 255, with 0 being the slowest speed and 255 the
fastest.

SQR

SQR returns the positive square root of its argument.

STOP

Configuration

SQR (a)

Example

]10 X = 49
]20 PRINT SQR(X)
]RUN
7

The STOP statement causes a halt in the execution of a Smart­
BASIC program.

Configuration

STOP

If STOP is executed in the program mode, the fallowing screen
message will be displayed .

?Break in line

line is the line number of the executed STOP statement.
CONT can be used to resume program execution after it has been

halted by a STOP statement.

222 Coleco ADAM User's Handbook

Example

]10 INPUT X
]20 IF X = 10 THEN STOP

]30 PRINT X
]40 END

In the preceding example, if a value of IO is input for X in line 10, the
program execution will stop and the following message will be displayed.

?Break in 20

By entering CONT, program execution will resume with line 30.

STRS

STR$ returns the string representation of its argument.

Configuration

X$ = STR$(a)

Example

]10 A$= STR$(40)

]20 PRINT A$

]30 END

]RUN

40

In the preceding example, the string variable A$ is assigned the string
value "40". The STR$ function converts the numeric value 40, to the
string value ''40".

TAB

In Smart BASIC, the TAB function moves the cursor to the right to
the column specified as its argument. TAB must be used with a PRINT

SmartBASIC Reference Gulde 223

statement.

Configuration

TAB (column)

TAB erases existing screen data as it moves to the right. If the
specified column is not to the right of the current column position, the
cursor will not move.

column can range from 1 to 255. If column is greater than the
allowed for the output device will move down to the next output line
where tabbing will continue.

Example

]10 X=1:Y=2
)20 PRINT

]30 PRINT X;

]40 PRINT TAB(48);
]50 PRINTY

]60 END

In the preceding example, Xis output at the leftmost column of the
display line. TAB then moves the current print position to the middle of
the next display line where Y is output.

TAN

TAN returns the tangent of its argument in radians.

Configuration

a= TAN(b)

Example

]10 A= TAN(35*3.141593/180)
]20 PRINT A

]RUN

.700207635

224 Coleco ADAM User's Handbook

TEXT

TEXT returns the screen to the text mode from any of the graphics
modes.

Configuration

TEXT

TEXT clears the screen, and homes the cursor.

TRACE

TRACE displays the line number of each statement as it is executed.
Generally, TRACE is used as a debugging tool.

Configuration

TRACE

TRACE can be turned off by executing NOTRACE.

VAL

The VAL function converts its string argument to a numeric value.
The numeric characters in the string argument will be converted to their
numeric equivalents until an unacceptable string character is encoun­
tered . The acceptable characters consist of the digits (0-9), the decimal
point, a leading plus or minus sign, blank spaces, and in scientific nota­
tion an additional plus or minus sign, the letter E (for exponent), and an
additional decimal point.

If the first character encountered by VAL is an unacceptable charac­
ter, a value of zero is returned.

Configuration

VAL (a$)

VLIN

SmartBASIC Reference Gulde 225

Example

]10 A$= "1.731E+02"
]20 8$ = "+97.5"
]30 C$ = "57CA"
]35 0$ = "E59"
]40 PRINT VAL(A$)
]50 PRINT VAL(8$)
]60 PRINT VAL(C$)
]70 PRINT VAL(D$)
]RUN

173.1

97.5

57

0

VLIN is used to draw a vertical line in low-resolution graphics.

Configuration

VLIN row 1, row 2 AT column

A vertical line will be drawn at the specified column from row I to
row 2. The color of the line will be determined by that specified in the last
COLOR statement executed.

row I and row 2 must be in the range ofO to 39. column must lie in the
range Oto 39. If a value outside of these ranges is used, the following error
message will be displayed:

?Illegal Quantity Error

If VLIN is executed in the text mode or high resolution graphics
mode, the statement will have no effect.

226 Coleco ADAM User's Handbook

VTAB

Example

)10 GR
)12 COLOR= 3
] 15 FOR I = 1 TO 20
)20 VLIN 10,30 AT I
)25 NEXT I
)30 END

VTAB moves the cursor to the indicated row on the screen. VTAB
causes the cursor to move up and down but never sideways.

Configuration

VTAB row

row can range from I to 23. A row value outside of that range results
in the following error message:

XDRAW

?Illegal Quantity Error

Example

]5 HOME

]10 VTAB 1 : PRINT
]20 VTAB 2:PRINT "ROW 2"
]30 VTAB 10:PRINT "ROW 10"

]40 VTAB 20:PRINT "ROW 20"
]50 END

XDRA W is used to erase a graphics shape 1n high resolution
graphics.

SmartBASIC Reference Gulde 227

Configuration

XDRAW shape [AT column, row]

The sca le and rota ti o n of the shape to be erased must be specified
indentical to the scale a nd rota tion of the shape when it was drawn.
XDRA W effective ly d raws the shape as ORA W would, exce pt that
XDRA W a lwa ys uses black as the default color, rega rd less of the present
high resolution color.

Example

]10 HGR2

]20 SCALE = 9

]30 HCOLOR = 9

]40 FOR I = 0 TO 255

]50 ROT = I

]60 DRAW 1 AT 128,96

]70 XDRAW 1 AT 128,96

]80 NEXT I

Operating System Command

SmartBASIC can use the majority of the operating system com­
mand s. These comma nds are used in a program to facilitate data storage
and retrieva l. T he format of these comma nds a re as follows.

PRINT CHR$(4);"command"

By PRINTi ng the C HR$(4), SmartBASIC will be a ltered that the
next characters to be printed represent a n operating system command .
Refe r to Chapter IO for s pecifics on the usage of the foll owing operating

system command s:

CATALOG LOCK RENAME

CLOSE MON RUN

DELETE NOMON SAVE

INIT OPEN UNLOCK

LOAD READ WRITE

228 Coleco ADAM User's Handbook

OTHER COMMANDS

The SmartBASIC interpreter will accept a number of commands
which seemingly have no useful programming purpose. These include:

FLASH (J . .L0-C.JJ~ l . •. ,\-) 1 1 C•,:rt I.· Q <.} <.. t,)

IN#
RECALL

STORE
WAIT \./ _/,,', \.) / f, .' { ; ~) i , • 1 -f /) (_. C.)

' '_, ~ ' ', • I ,

It is possible that these commands were included in Smart BASIC in
order to make the language compatible with Applesoft BASIC.* Almost
any Applesoft program can be entered into SmartBASIC and run with­
out modification .

• FLASH, IN#, RECALL, STORE and WAIT are reserved words in Applesoft BASIC.
Applesoft BASIC® is a registered trademark of the Apple Computer Co.

rgdir
Rectangle

rgdir
Rectangle

Appendix 1 229

Appendix 1.
SmartBASIC Reserved Words

ABS(
AND
ASC(
AT
ATN(
CALL
CHA$(
CLEAR
COLOR=
CONT
COS(
DATA
DEF
DEL
DIM
END
EXP(
FLASH
FN
FOR
FAE(
GET
GOSUB
GOTO
GR
HCOLOR=
HGR
HGR2
HIMEM:
HLIN
HOME
HPLOT

HTAB
IF
IN#
INPUT
INT(
INVERSE
LEFT$(
LEN(
LET
LIST
LOG
LOMEM:
MID$(
NEW
NEXT
NORMAL
NOT
NOTRACE
ON
ONERR
OR
POL(
PEEK(
PLOT
POKE
POP
POS(
PRINT
PR#
READ
RECALL
REM

RESTORE
RESUME
RETURN
RIGHT$(
AND(
ROT=
RUN
SCALE=
SCAN(
SGN(
SHLOAD
SIN(
SPC(
SPEED=
SQR(
STEP
STOP
STORE
STA$(
TAB(
TAN(
TEXT
THEN
TO
TRACE
USA(
VAL(
VLIN
VTAB
WAIT
XDRAW

230 Coleco ADAM User's Handbook

Appendix 2.
SmartWrlter Quick Reference Guide

MOVE CURSOR
Description Key Sequence

Right one character -
Left one character -
Up one line t
Down one line l
Up to top left of screen HOME
Right to end of screen HOME+ -
Left to end of screen HOME+ -
Up to top of screen HOME+ t
Down to bottom of screen HOME+ l

SAVE FILES
Description Key Sequence

Store block STORE-GET\STORE HI-LITE\DRIVE A\
filename\STORE HI-LITE

Store screen STORE-GET\STORE SCREEN\DRIVE A\
filename\STORE SCREEN

Store workspace STORE-GET\STORE WK-SPACE\DRIVE A\
filename\STORE WK-SPACE

Appendix 2 231

FILE and BLOCK OPERATIONS
Description Key Sequence

Get file directory STORE-GET\GET\DRIVE A
Get file STORE-GET\GET\DRIVE A\filename\

GET FILE
Get backup directory STORE-GET\GET\DRIVE A\BACKUP

FILE DIR
Make backup file STORE-GET\STORE WK-SPACE\DRIVE A\

STORE WK-SPACE
Delete file STORE-GET\GET\DRIVE A\filename\

DELETE\FINAL DELETE
Read file into text STORE-GET\GET\DRIVE A\filename\

GET FILE
Print file PRINT\PRINT WK-SPACE\PRINT
Hi-lite text HI-LITE OFF\underline text
Erase hi-lite HI-LITE ERASE
Move hi-lite MOVE-COPY\MOVE\HI-LITE FIRST\

HI-LITE LAST\MOVE
Copy hi-lite MOVE-COPY\COPY\HI-LITE FIRST\

HI-LITE LAST\COPY
Delete hi-lite DELETE\HI-LITE\FINAL DELETE
Write hi-lite onto file HI-LITE\STORE/ GET\STORE HI-LITE\

DRIVE A\filename\STORE HI-LITE

I Print hi-lite PRINT\PRINT HI-LITE\PRINT

DELETE and INSERT

Description Key Sequence

Delete character BACK-SPACE
Delete h i-lite DELETE\HI-LITE\FINAL DELETE
Delete file STORE-GET\GET\DRIVE A\filename\

DELETE\FINAL DELETE
Insert text INSERT\text\DONE
Insert file STORE-GET\GET\DRIVE A\filename\

GET

FIND and REPLACE

Description Key Sequence

Find text SEARCH text START SEARCH/DONE
Find and replace text SEARCH\text\START SEARCH\REPLACE\

text\REPLACE\DONE
Find and replace all SEARCH\text\START SEARCH\REPLACE\

text\REPLACE ALL

232 Coleco ADAM User's Handbook

SCREEN FORMAT

Description Key Sequence

Standard to moving window SCREEN OPTIONS\MOVING WINDOW
Moving window to standard SCREEN OPTIONS,STANDARD F.ORMAT
Select white background SCREEN OPTIONS\SELECT COLOR\WHITE
Select green background SCREEN OPTIONS\SELECT COLOR\GREEN
Select black background SCREEN OPTIONS\SELECT COLOR\BLACK
Select grey background SCREEN OPTIONS\SELECT COLOR\GREY
Select blue background SCREEN OPTIONS\SELECT COLOR\BLU-E
Turn sound off SCREEN OPTIONS\NO SOUND
Select partial sound SCREEN OPTIONS\PARTIAL SOUND
Select full sound SCREEN OPTIONS\FULL SOUND

PAGE FORMAT

Description Key Sequence

Set left margin MARGIN-TAB-ETC\HORIZ MARGIN\
LEFT 10\use cursor keys\DONE

Set right margin MARGIN-TAB-ETC\HORIZ MARGIN\
RIGHT 76\use cursor keys\OONE

Set top margin MARGIN-TAB-ETC\VERT MARGIN\TOP\
use cursor keys\DON E

Set bottom margin MARGIN-TAB-ETC\VERT MARGIN\
BOTTOM\use cursor keys\DONE

Set tab MARGIN-TAB-ETC\TABS\TAB SET
Clear tab MARGIN-TAB-ETC\TABS\TAB CLEAR
Clear all tabs MARGIN-TAB-ETC\TABS\ALL CLEAR
Increase line spacing MARGIN-TAB-ETC\LINE SPACING\UP\

. . . \DONE
Decrease line spacing MARGIN-TAB-ETC\LINE SPACING\

DOWN\ . . . \DONE
Start new page MARGIN-TAB-ETC\END PAGE
Letter to legal size MARGIN-TAB-ETC\TYPE OF PAPER\

LEGAL14
Legal to letter size MARGIN-TAB-ETC\TYPE OF PAPER\

LETTER 11

Appendix 2 233

PRINTING FORMAT

Description Key Sequence

Single sheet to fan-fold PRINT\PRINT OPTIONS\FAN FOLD
Fan-fold to single sheet PRINT\PRINT OPTIONS\SINGLE SHEET
Superscript SUPER-SUBSCRIPT\SUPERSCRIPT\text\

DONE
Subscript SUPER-SUBSCRIPT\SUBSCRIPT\text\

DONE
Print hi-lite PRINT\PRINT HI-LITE\?RINT
Print screen PRINT\PRINT SCREEN\PRINT
Print workspace PRINT\PRINT WK-SPACE\PRINT
Automatic page numbering PRINT\PRINT OPTIONS\AUTO PAGE#
Set first page number to n PRINT\PRINT OPTIONS\FIRST PAGE

IS 1\ . . . 'FIRST PAGE IS n
Stop print STOP PRINT
Re-start print after stop PRINT

MISCELLANEOUS

Description Key Sequence

Abort command sequence ESCAPE-WP
Undo last command UNDO
Print hi-lite PRINT\PRINT HI-LITE\PRINT
Print screen PRINT\PRINT SCREEN\PRINT
Clear screen CLEAR\CLEAR SCREEN\FINAL CLEAR
Clear workspace CLEAR\CLEAR WK-SPACE\FINAL CLEAR

234 Coleco ADAM User's Handbook

Appendix 3.
ASCII Codes

This append ix outlines the characters associated with the A DAM 's
character set. By entering PRINT CHR$(X), where X is one of the
following codes, the associated character will be displayed. Also, by
entering PR INT ASC("Y") where Y is the character, the code associated
with that character will be displayed .

Code Character Code Character Code Character
")

31 ~ 61 1 =

2 © 32 Space 62 >
3 {} 33 ! 63 ?
4 • 34 II 64 @

5 ♦ 35 # 65 A

6 • 36 $ 66 B
' 37 % C 7 67

8 Backspace 38 & 68 D
9 39 I 69 E

10 Line Feed 40 (70 F
11 i: 41) 71 G
12 Clear Screen 42 * 72 H
13 Carriage Return 43 + 73 I
14 ✓ 44 I 74 J
15 00 45 - 75 K
16 Print Screen 46 76 L
17 > 47 I 77 M -
18 < 48 0) 7 78 N -
19 ± 49 1 79 0
20 .J 50 2 80 p

21 - 51 3 81 Q
22 52 4 82 R
23 0 53 .5 83 s
24 54 6 84 T
25 i- 55 7 85 u
26 r- 56 8 86 V
27 ► 57 9 87 w
28 58 88 X
29 ...J 59 I 89 y

30 r 60 < 90 z

Appendix 3 235

Code Character Code Character Code Character

91 [104 h 116 t
92 \ 105 i 117 u
93 1 106 j 118 'V

94 I\ 107 k 119 w
95 - 108 I 120 X

96 I 109 m 121 y
97 a 110 n 122 z
98 b 111 0 123 {
99 C 112 p 124 I

100 d 113 q 125 }
101 e 114 r 126 -
102 f 115 s 127 Cursor
103 g

Codes 164-255 correspond to the reverse of characters 36-127.

I
) .. _,
\ r . '- '

.; _I_ f -
l '

\..

• I I ·-

rgdir
Rectangle

236 Coleco ADAM User's Handbook

A

ABS 130, 131, 132, 166
Absolute value 130. 131, 166
Activating the printer 210
ADAM NET 13
Addition 93, 99
AND 97-99, 166-167
Applesoft BASIC® 228
Applications programs 18
Arctangent 131, 168-169
Arguments 75
Arithmetic expressions 92-95
Arrays 119-126
ASC 130. 133, 137-138, 168
ASCII 13, 85, 135, 168, 170, 234
Assembly langauge 72
Assignment statements 90-91 , 123-126, 194,

210-222
ATN 130, 131, 168-169
Available memory 126, 139, 180

8

Backup files 43-44. 142
Bad Subscript error 122
Bar charts 156-157
BARACADE 157-160
BASIC 17-18
Binary 13, 17
Bits 13
Boolean expressions 92, 97-98
Boolean operator 166-167, 198-199, 201-202
Branching statements 112-115

conditional 189-190, 199-201
unconditional 183

Built in functions 130-133
Byte 13

C

Calculator mode 74
CALL 169
Carriage return 103, 149

Index

CATALOG 144, 169, 227
Cataloging a Data Pack 144
Central Processing Unit 12, 13, 14, 17
Charts 156-157
CHRS 130, 137- 138. 170
CLEAR 91, 122-123, 170-171
Clearing the screen 187-188
CLOSE 147, 227
ColecoYision 23-25
COLOR 36-37. 154- 155. 171-172
Command sequence structure 67-70
Commands 75 _,,
Compiled code 72
Compiled languages 72-73
Compiler 72
Complex numbers 117
Components 12- 18
Compound expressions 93-94
Computer languages 17
Concatenation 134
Conditional branch 114, 189-190, 199-201
Conditional statement 111-112, 189-190
Conjunction 166-167
CONT 172
Continue 172
Copying text 50-52
cos 130, 173
Cosecant 131
Cosine 130, 173
Cotangent 131
CP/ M 12, 18
CPU 12, 13, 14, 17
CR 149
Creating a file 39
Cursor 33, 74
Cursor keys 35, 45
Cursor position function 208

D

Daisy wheel 26-28
DATA 123-126, 173-174, 210-211
Data conversion 137-138

Data Drive commands 146-147
Data Files 147-151

closing 147
deleting 145
opening 147
protecting 145
renaming 144, 148-150
writing 148-150

Data pointer 125, 211-212
Data types 85-88
DEF FN 133-134, 174-175
Default values 90
Degrees 130, 131
DEL 175-176
DELETE 145, 227
Deleting files 145
Deleting program lines 77, 175-176
Delimiter 102
Descriptor 138
Digital Data Drive 12
Digital Data Pack 14-17, 30, 73
DIM 121-123, 176-177
Dimensioning an array 121-123, 176-177
Direct mode 74
Division 93, 99
DRAW 163, 177
Dummy arguments 133-134

E

Editing a program 78-81
Editing files 44-52

backspace 47
cursor movement 45-47
ESCAPE 49-50
finding text 48-49
text deletion 47
text insertion 47-48
text replacement 47
UNDO 49-50

Editing SmartWriter files 44-52
Editor 79-81
END 178
End of page 60-61
Equality 95-96
Error handling 117-118
Error handling routines 201, 212-213
Error messages 77-78
Error trapping 20 I
Execution of a program 74-75, 81-82, 143,

216
EXP 130, 132, 178

Expanding ColecoVision 23-25
Exponent87
Exponential function 130, 132, 178
Exponentiation 93, 99, I 30~ 132
Expressions 92-99

F

arithmetic 92-95
Boolean 92, 97-98
compound 93-94
logical 92, 97-98
mixed 94-99
relational 92, 95-96

File handling 39-43, 141-151
Filename 40, 82, 141-142
Files 141-151

backup 142
data 147-151
deleting 145
program 141-147
protecting 145
renaming 144

Fixed point 87-88
FLASH 228
Floating point 87-88
FOR 116

Index 237

FOR.NEXT 115-116, 125-126, 178-180
Form letter 53-55
Formatting output 56-67, 104-106, 189
FRE 123, 130, 139, 180
Full screen editor 79-81
Functions 129-139

G

built in 130-133
exponential 178
mathematic 130
string 130, 134-138, 192-193, 197,

213-214, 222
trigonometric 130, 168-169, 173,

219-220, 223
user defined 133-1 34, 174-175

Game controller 202-204
Game program 157-160
Game slot 12
Games 11
GET 109, 181
GOSUB 113, 181,213
GOTO 112, 114, 183
GR 154, 183-184

238 Coleco ADAM User's Handbook

Graphics 153-164
commands 154-156, 160- 164
example program 164
high resolut ion 160-164, 185
low resolution 154-160, 183-184, 204-205

Greater than 95-96

H

Halting a program 82
HCOLOR 160-161, 184-185
Hexdecimal 13
HGR 160, 185
HGR2 160, 185
Hi-Lite 52-53
High level languages 17
High resolution graphics 153, 160-164
HIMEM: 186
HUN 155-156. 187
HOME 187- 188
HOME key 33. 45
Home posit ion 33. 35
Horizontal formatting 104-106
Horizontal lines 155-156. 187
Horizontal tabs 105-106
Housekeeping 139. 180
HPOLT 161-162, 188
HTAB 105-106. 189. 208

IF.THEN 111-112, 114. 189-190
Immediate mode 74
IN# 228
Index variable 116
Inequality 95-96
INIT 145-146. 227
Initial values 90
lnitialiring a Data Pack 145-146
INPUT !07-109, 148-150, 191-192
Inputting data 107-109, 191-192
Inserting program lines 77
Installation 19-25
INT 130, 132, 190-191
Integer variables 89-90
Integers 87-88
Interpreted languages 72-73
Interpreter 17-18, 73
INVERSE 104, 191, 198
1/0 monitor 150-151

J

Joystick controllers 158, 202-204

K

Kcyboa rd 17. 33
Keywords 75
Kilobyte 13

L

LEFTS 130. 135- 136. 192-193
LEN 130, 193
Length of a string 193
Less than 95-96
LET 90-91. 194
Linc feed 103
Line numbers 75, 77
Linc spacing 62-63
LIST 194-195
Listing a program 78-79, 194-195
LOAD 83, 142- 143, 195, 227
Loading program files 142-143, 195
LOCK 145, 227
Locking files 145
LOG 130, 132, 196
Loga rithm 130. 132. 196
Logical expressions 92. 97-98
Logical operato rs 166-167, 198-199. 201-202
LOGO 18
LOMEM : 196
Looping statements 115- 116
Loops 115, 178-1 80
Low level languages 17
Low resolution graphics I 54-160, 204-205

M

Machine language 13. 72, 169
Mathematic functio ns 130
Memory 12-14
Menu 31
MIDS 130. 135. 136-137. 197
Mixed expressions 94-99
MON 150-151 , 227
Monitor 150-15 I
Moving text 50-52
Moving window format 37
Multiple statement program lines 83
Multiplication 93, 99

N

Natural logarithms 196
Negation 93, 99
Nested loop 116, 179
NEW 76, 197- 198

NEXT 116. 178-180
No More Room error 151
NOMON 150-151 . 227
NORMAL 104. 198
NOT 97-99, 198-199
NOTRACE 199. 224
Numeric data 86-88
Numeric variables 89-90

0

ON,GOSUB 114-115. 199-201 . 213
ON.GOTO 114. 199-201
ONERR GOTO 117-118. 201
OPEN 147. 227
Operating system 14. 227
Operating system commands 146-147. 227
Operators 92-99

Boolean 97-98. 166-167. 198-199,
201 -202

logical 97-98. 198-199. 201-202
numeric 93-95
relational 95-96
string 134

OR 97-99. 201-202
Order of eva luation 94, 99
Out of Data Error 125
Outputting data 101-107. 209
Outputting files 55-67

p

Paper size 61-62
Parameters 75
Parts list 20. 23
POL 130. 158, 202-204
PEEK 130. 204
Pixel 153
Platen 33
PLOT 155. 204-205
Plotting points 155. 161-162. 188
POKE 206
POP 206-207
POS 130,208
PR# 209-210
PR#0 106-107
PR# I 106-107
PRINT 74. 75. 76. 101-107. 148-150, 209
Print zones 102. 104
Printer 17. 26-30

output 106-107
problems 26-30
ribbon cartridge 28-30

Programs 71-83
deleting 197-198
editing 79-81
entering 74, 75-77
execution 74-75, 81-82. 143
listing 78-79, 194-195
loading 83
saving 82. 217

Program files 141-147
deleting 145
loading 142-143. 195
protecting 145
renaming 144
saving 142. 217

Programming languages 72
Prompt 74
Prompt message 108. 192
Protecting files 145

R

Radians 130, 131
RAM 12. 14
Random Access Memory 12
Random numbers 130. 214-215
Rate of output 220-221

Index 239

READ 123-126. 148-150, 173-174. 210-211
227

Read-only memory 12
Reading from data files 148-150
RECALL 228
Reenter 108
Reference guide 165-228
Relational expressions 92. 95-96
Relational operators 135
REM 211
Remark statements 211
RENAME 144. 227
Renaming files 144
REPLACE 54-55
Reserved words 75. 229
RESET COMPUTER 22. 25. 30
Resolution 153. 160
Restarting a program 172
RESTORE 124. 211-212
RESUME 117-118. 212-213
Retrieving a file 41-43
RETURN I 13,181.213
Reverse video I 04, 191
RIGHTS 130. 135. 136, 213-214
RND 130, 214-215
ROM 12, 14

240 Coleco ADAM User's Handbook

ROT 162-163, 215-216
RUN 76, 81-82, 216,227
Run-time monitor 72
Running a program 143

s
SAVE 82, 142,217,227
Saving program files 142, 217
SCALE 162, 217-218
Scientific notation 87-88
Screen options 36-38
SCRN 156, 218-219
Search 48-49, 54-55
Secant 131
Setting margins 57-59
SGN 130, 132, 133,219
Shape table 162-164
SIN 130, 219-220
Sine 130, 219-220
Smart keys 33
SmartBASIC 71-83

history 71
interpreter 73

SmartFiler 18
SmartWriter 31-70

reference guide 230
Sound 36
Source code 72
SPC 105, 130, 208, 220
SPEED 220-221
SQR 130, 132,221
Square root 131 , 132, 221
Standard format screen 32
Statements 75
STEP 116, 180
STOP 221-222
Stopping program execution 82
STORE 228
Storing a file 39-41
STRS 130, 137. 222
String functions 130, 134-138, 192-193, 197,

213-214, 222
String operators 134
String space 138
String variables 89-90
Strings 85-86
Subroutines 112-113, 181,213
Subscripted variables 119-126
Subscripts 63--64
Subtraction 93, 99
Superscripts 64
Syntax error 126
System unit 12

T
TAB 105, 130, 189, 208, 222-223
Tables 119-126
Tabs 64-66
Tabulation 222-223
TAN 130, 223
Tangent 130, 223
TEXT 224
Text mode I 53, 224
THEN 189-190
TO 116
TRACE 199,224
Trigonometric functions 130, 168-169, 173,

219-220. 223
Troubleshooting 26-30

u
Unconditional branch 112. 183
UNDO 49-50
UNLOCK 145. 227
Unlocking files 145
User defined functions 133-134, 174-175

V
VAL 130, 137,224,225
Variable assignment 123-126
Variable names 89-90
Variable table 138
Variables 88-90

integer 89-90
numeric 89-90
string 89-90

Vertical lines 155-156
Vertical tabs 105-106
VLIN 155-156, 225-226
Volume name 145-146
VTAB 105-!06, 226

w
WAIT 228
Warning messages 77-78
Word processor 31-70
Word wrap 39
WRITE 148-150, 227
Writing to data files 148-150

X
XDRAW 163-164, 226-227

z
Z80A 13, 14, 17

$9.95 in USA • $12.95 in Canada

Coleco ADAM User's Handbook

The Coleco ADAM computer system has impressive computing and
word processing capabilities. The Coleco ADAM User's Handbook pro­
vides clear, concise, and complete instructions which allow the user to
master these capabilities.

The Coleco ADAM User's Handbook is written in a simple, concise
manner so that even a first-time user can understand the Coleco ADAM,
yet it still contains a wealth of advanced information for the experienced
user. A complete guide to computing and word processing with the
ADAM is included.

The following topics are covered in detail:

• Installation and Operation
• SmartWriter Word Processing
• SmartBASIC Programming
• Printer Usage and Maintenance
• Graphics
• Digital Data Drives
• Files and File Handling
• Reference Guide to SmartBASIC

The Coleco ADAM User's Handbook is a must for any user or
potential user of the Coleco ADAM computer.

WsiWEBER
SYSTEMS
INCORPORATED

ISBN : 0-938862-45-6 LC: 84-2240

